登录
首页 » Others » 高频注入法最好的论文

高频注入法最好的论文

于 2020-11-03 发布
0 131
下载积分: 1 下载次数: 3

代码说明:

对高频注入法做了深入分析,从仿真再到实验,都分析的很到位

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Android对apk源码的修改工具
    【实例简介】本人博客:Android对apk源码的修改--反编译+源码修改+重新打包+签名【附HelloWorld的修改实例】中用到的资源,博客以helloworld为例讲述了对apk源码进行修改的方法,感兴趣的可以看看
    2021-10-31 00:32:00下载
    积分:1
  • 电力系统状态估计-最小二乘+不良数据辨识-matlab
    电力系统状态估计(电力网系统辨识)-最小二乘+不良数据辨识-matlab最小二乘是对电力系统进行状态估计的最基本方法,而考虑到电力网数据可能存在不良数据,需要使用相关方法进行不良数据辨识;检测到不良数据点位置后,系统还会剔除不良数据再次进行辨识两份导入数据中,iSE30Bus1为有误差数据,iSE30Bus2为无误差数据输出结果会导入至oStateEstimation中
    2020-12-03下载
    积分:1
  • code-基于视频分析的火焰检测方法
    本方法主要使用了图像的颜色特征和尺度不变特征SIFT以及加速鲁棒特征SURF对候选区域进行筛选,并结合火焰的运动特性来判断。系统由以下三部分构成:1)提取火焰候选区域;2)构建视觉词典,通过颜色纹理特征对候选区域进行分类;3)时间维度上验证。相比于现有的火焰检测算法,本方法能够更加高效准确地检测出视频中的火焰。另外,我们收集并发布了目前为止最大的火焰检测数据集。我们相信这对于火焰检测领域的科研和实际应用都是很有帮助的。
    2020-07-03下载
    积分:1
  • matlab遥感图像处理工具包
    matlab遥感图像处理工具包,非常全面好用
    2020-12-11下载
    积分:1
  • ieee118节点潮流计算序及节点数据
    包含ieee118节点以及线路详细数据 以及 MATLAB潮流计算程序
    2020-11-27下载
    积分:1
  • OFDM系统实现matlab序(发送到接收的每个模块)
    整个OFDM系统的实现程序,包括发送端的编码,调制(各种调制方式BPSK,QPSK,PSK...),映射,交织,IFFT,插循环前缀,串并转换以及接收端的去循环前缀,解交织,FFT,解调,解码等
    2020-12-04下载
    积分:1
  • ABAQUS切削模拟(两个inp文件,包括二维切削和三维铣削)
    用ABAQUS做的两个切削模拟,分别模拟了二维切削和三维铣削过程,文件类型为inp文件。
    2020-06-18下载
    积分:1
  • UCB伯克利经典人工智能project-Pacman吃豆人-code,测试满分&有bonus(针对project1,project2-4后续更)
    针对UCB伯克利的CS188经典项目-Pacman吃豆人,人工智能课常用作业,附件为project1的code,文本文档格式,包括search.py和searchAgent.py两个文件,已通过autograder测试,26/25分,有1分bonus
    2020-12-11下载
    积分:1
  • 平面变压器3D仿真资料
    采用COMSOL软件,对平面变压器的仿真过程进行叙述,让大家了解平面变压器的仿真流程,是个很好的指导教材Solved with COMSOL Multiphysics 5.0Results and discussionThe magnetostatic analysis yields an inductance of 0. 1l mH and a dc resistance of0. 29 mQ2. Figure 2 shows the magnetic flux density norm and the electric potentialdistributionvolume: Coil potentiaL()Volume: Magnetic flux density norm (t▲0.07▲2.88×10-42.51.50.03050.01V656×107v0igure 2: Magnetic flux density norm and electric potential distribution for themagnetostatic analysisIn the static (DC) limit, the potential drop along the winding is purely resistive andcould in principle be computed separately and before the magnetic flux density iscomputed. When increasing the frequency, inductive effects start to limit the currentand skin effect makes it increasingly difficult to resolve the current distribution in thewinding. At sufficiently high frequency, the current is mainly flowing in a thin layernear the conductor surface. When increasing the frequency further. capacitive effectscome into play and current is flowing across the winding as displacement currentdensity. When going through the resonance frequency, the device goes from behavingas an inductor to become predominantly capacitive. At the self resonance, the resistivelosses peak due to the large internal currents Figure 4 shows the surface current3 MODELING OF A 3D INDUCTORSolved with COMSOL Multiphysics 5.0distribution atl MHz. Typical for high frequency the currents are displaced towardsthe edges of the conductor.freq(1)=1.0000E6_Surfaee: Surface-current density norm (A/)▲18618Q16010¥1.02Figure 3: Surface current density at I MHz (below the resonance frequency)Figure 4 shows how the resistive part of the coil impedance peaks at the resonancefrequency near 6MHz whereas Figure 5 shows how the reactive part of the coiimpedance changes sign and goes from inductive to capacitive when passing throughthe resonance4 MODELING OFA3DINDUCTORSolved with COMSOL Multiphysics 5.0Global: Lumped port impedance(Q2)d port impedance7.5G6.583275655545352510.10.20.30.40.509igure 4: Real part of the electric potential distribution5 MODELING OF A INDUCTORSolved with COMSOL Multiphysics 5.0Global: Lumped port impedance(Q2)35000Lumped port impedance200001000050000500010000-1500020000250000.10.20.30.40.50.60.70.809Figure 5: The reactive part of the coil impedance changes sign hen passing through theresonance frequency, going from inductive to capacitiveModel library path: ACDC_Module/Inductive_ Devices_and_coils/inductor 3dFrom the file menu. choose newNEWI In the new window click model wizardMODEL WIZARDI In the model wizard window click 3D2 In the Select physics tree, select AC/DC> Magnetic Fields(mf)3 Click Add4 Click StudyMODELING OF A3D NDUCTORSolved with COMSOL Multiphysics 5.05 In the Select study tree, select Preset Studies>StationaryGEOMETRYThe main geometry is imported from file. Air domains are typically not part of a CaDgeometry so they usually have to be added later. For convenience three additionaldomains have been defined in the CAd file. These are used to define a narrow feed gapwhere an excitation can be appliedport l(impl)I On the model toolbar, click Import2 In the Settings window for Import, locate the Import section3 Click Browse4 Browse to the models model library folder and double-click the filenductor 3d. mphbinSphere /(sphl)I On the Geometry toolbar, click Sphere2 In the Settings window for Sphere, locate the Size section3 In the Radius text field, type 0.2ick to expand the Layers section. In the table, enter the following settingsLayer nameThickness(m)ayer0.055 Click the Build All Objects buttonForm Union(fin)i On the Geometry toolbar, click Build AllClick the Zoom Extents button on the Graphics toolbar7 MODELING OF A 3D INDUCTORSolved with COMSOL Multiphysics 5.03 Click the Wireframe Rendering button on the Graphics toolbarThe geometry should now look as in the figure below0.1-0.10.20.0.0.1y0.0.2Next, define selections to be used when setting up materials and physics Start bdefining the domain group for the inductor winding and continue by adding otheruseful selectionsDEFINITIONSExplicitI On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type Winding3 Select Domains 7,8 and 14 onlyI On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type Gap3 Select domain 9 onlI On the Definitions toolbar, click Explicit8 MODELING OF A3DINDUCTORSolved with COMSOL Multiphysics 5.02 In the Settings window for Explicit, in the Label text field, type core3 Select Domain 6 onlyExplicit 4I On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type InfiniteElements3 Select Domains 1-4 and 10-13 onlyExplicit 5I On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type Non-conducting3 Select Domains 1-6 and 9-13 onlyI On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type Non-conductingwithout Ie3 Select Domains 5, 6, and 9 only.Infinite Element Domain /(iel)Use infinite elements to emulate an infinite open space surrounding the inductorI On the definitions toolbar click Infinite element domain2 In the Settings window for Infinite Element Domain, locate the Domain Selectionsection3 From the Selection list. choose Infinite Elements4 Locate the Geometry section From the Type list, choose SphericalNext define the material settingsADD MATERIALI On the Model toolbar, click Add Material to open the add Material window2 Go to the Add material window3 In the tree, select AC/DC>Copper.4 Click Add to Component in the window toolbar9 MODELING OF A 3D INDUCTORSolved with COMSOL Multiphysics 5.0MATERIALSCopper(mat/)I In the Model Builder window, under Component I(comp l)>Materials click Copper(matD)2 In the Settings window for Material, locate the Geometric Entity Selection section3 From the Selection list, choose windingADD MATERIALI Go to the Add Material window2 In the tree. select built-In>Air3 Click Add to Component in the window toolbarMATERIALSAir(mat2I In the Model Builder window, under Component I(comp l)>Materials click Air(mat2)2 In the Settings window for Material, locate the Geometric Entity Selection section3 From the Selection list, choose Non-conductingThe core material is not part of the material library so it is entered as a user-definedmateriaMaterial 3(mat3)I In the Model Builder window, right-click Materials and choose Blank Material2 In the Settings window for Material, in the Label text field, type Core3 Locate the geometric Entity Selection section4 From the selection list choose Core5 Locate the Material Contents section. In the table, enter the following settingsPropertName Value Unit Property groupElectrical conductivity sigma0S/IBasicRelative permittivity epsilonrBasicRelative permeability mur1e3Basic6 On the model toolbar. click Add Material to close the Add Material windowMAGNETIC FIELDS (MF)Select Domains 1-8 and 10-14 only0MODELING OF A 3D INDUCTOR
    2020-12-10下载
    积分:1
  • 云模型发生器MATLAB代码
    根据李德毅院士提出的云模型,由3个云参数:期望、熵、超熵生成可视化的云图。【MATLAB代码】
    2020-12-01下载
    积分:1
  • 696522资源总数
  • 104047会员总数
  • 21今日下载