登录

最新会员 最新下载

成为了本站VIP会员

12月20日 19:33

成为了本站VIP会员

12月19日 10:10

成为了本站VIP会员

12月12日 16:18

成为了本站VIP会员

12月11日 09:21

成为了本站VIP会员

11月28日 10:37

成为了本站VIP会员

11月28日 09:08
已选条件
  1. 编程语言:所有
  2. 代码类别:所有
  3. 发布时间:近三天
全部撤销
编程语言 更多 收起
代码类别 更多 收起
发布时间
更多选项

1. 工业机器人控制轨迹规划及编程

wei简单的介绍了工业机器人控制轨迹规划和编程课程,可以参考下,开拓思路山东建筑大学备课纸第七章工业机器人的轨迹规划及编程轨迹规划轨迹规划是指根据作业任务要求,确定轨迹参数并实时计算和生成运动轨迹。它是工业机器人控制的依据,所有控制的目的都在于精确实现所规划的运动。机器人语言机器人具有可編程功能,因此需要用户和机器人之间的接口。为了提高编程效率,岀现了机器人编程话言,它以一种暹用的方式解决了人一机通信问题。机器人离线编程机器人离线编程系统是利用计算机图形学,建立机器人编程环境,从而可以脱离机器人工作现场进行编程的系统。由于不占用机动时间,提高了设备利用率。而且由于离线编程本身就是 CAD/CAM一体化的组成部分,有时可以直接利用CAD数据库的信息,大大减少了编程时间,提高了编程水平。7.1工业机器人的轨迹规划引言指定工业机器人执行某政接作作[加些约束条住轨迹的划和协关节坐标空间斗标空间轨迹规划涉及卜面三个问题◇要对机器人的任务进行描述,即对机器人的运动轨迹进行描述。◇根据所确定的轨迹参欻,如何在计算机内部描述所要求的轨迹。这主要是选择习惯规定以及合理的软件数据结构问题。◇对内部描述的轨迹进行实际计算。通常是在运行时间内按一定的速率计算出位置、速度和加速度,生成运动轨迹。二、轨迹规划的一般性问题工业机器人的作业可以描述成工具坐标系{相对于工作坐标系{S的一系列运动:图7-1作业的措述工具坐标系相对于工作坐标系的运动来描述作业路经把作业路径的描述与具体的机器人、手爪或工具分离开来,形成了模型化的作业描述方法。从而使这种描述既适用于不同的机器人,也适用于同一机器人上装吏不同规格的工具:2凯器具的症置程上置机器人从初始状态运动到终止状态的作业,看成是工具巫标系从初始位置T0}变化到终止位置Tf}的坐标变换变换包含了工具坐标系的位置和姿态的变化。在轨迹规划中,也常用“点”这个词来表示机器人的状态,或用它来表示工具坐标系的位姿。当需要更详细地描述运动时,不仅要规定机器人的起始点和终止点,而且要给出介于起始点和终止点之间的中间点,也称路径点运动轨迹除了位姿约束外,还存在着各路径点之间的时间分配问题。例如,在规定路径的同时,必须给出两个路径点之间的运动时间机器人的运动应当平稳,不平稳的运动将加剧机械部件的磨损,并导致机器人的振动和冲击。钪迹规划既可在关节■空间中进行,也可在直角坐标空间中进行。在关节空间中进行轨·迹规划是指将所有关节变量表示为时间的函数,用这些关节函数及其阶、三阶导数描述机器人预期的运动。在直角坐标空间中进行轨迹规划,是指将手爪位姿、速度和加速度表示为时间的函数,而相应的关节位置、速度和加速度由手爪信息导出三、关节空间的轨迹规划机器人作业路径点通常由工具坐标系(}相对于工作坐标系{S)的位姿来表示,因此,在关节空间中进行轨迹规划4≯首先需要将毎个作业路径点向关节空间变换,即用逆运动学方法把路径点转换成关节角度值,或称关节路径点;然后,为毎个关节相应的关节路径点拟合光滑函数;这些关节函数分別描述了机器人各关节从起始点开始,依次通过路径点,最后到达某目标点的运动轨迹。由于毎个关节在相应路径段运行的时间相同,这样就保证了所有关节都将冋时到达路径点和目标点,从而也保证了工具坐标系在各路径点县有预期的位姿;关节空间的轨迹规划:关节空间中进行轨迹规划,不需考虑直角坐标空间中两个路径点之间的轨迹形状,仅以关节角度的函数来描述机器人的轨迹,计算简单、省时;关节空阃与直角坐标空间并不是连续的对应关系,关节空间内不会发生机构的奇异现象,从而避免了在直角坐标空间规划时所出现的关节速度失控问题;在关节空间进行轨迹规划,规划路径不是唯一的。只要满足路径点上的约束条件,可以选取不同类型的关节角度函数,生成不同的轨迹。1.三次多项式插值当己知末端操作器的起始位姿和终止位姿时,庄逆向运动学,即可求出对应于两位姿的各个关节角度。因此,末端操作器实现两位姿运动轨迹描述,可在关节空间中用通过起始点关节角和终止点关节角的一个平滑轨迹函数0(t)来表示;为了实现关节的平稳动,每个关节的轨迹函数(t至少需要满足四个约束条件:两端点位置约束和两端点速度约束端点位置约束是指起始位姿和终止位姿分别所对应的关节角度00=已为满足关节运动速度的连续性要求,在起始点和终止点的关节速度简单地设定为零,即(0=06()=0上述给出的四个约東条件可以唯一地确定一个三次多项a(t)=a0+a!t+a22+a3t3运动过程中的关节速度和加速度则为:9()=a1+2a2!+3agt2(t)=2a2+6at为了求得三次多项式的系数,代以给定的约束条件,有方稈组分=a+at+a+aD-dt 2u r t ja rl求解上述方程组,可得3所以,对于初速及终速为零的关节运动,满足连续平稳运动要求的三次多项式插值函数为a(r=6+(-2--)其关节角速度和角加速度表达式为()-是2(明,-一吾(,-8F6()=是(4-)-;-r三次多项式插值的运动轨迹曲线!图7三践康式插值毛动轨遗)位瞎时刺雙:{)急澧时繭线:C)鱼加速度间曲线2.过路径点的三次多项式插值机器人作业除在A、B点有位姿要求外,在路径点C、D…也有位姿要求。对于这种情況,假如终端执行器在路径点停留,即各路径点上速度为0,则轨迹规划可连续直接使用前面介绍的三次多项式插值方法;但如果只是经过,并不停留航需要将前述方法推广。AB仨某段路径上,“起始点”为θ0和ω0,"终止点"为f和ωf。这时,确定三次多项式系数的方法与前面所述的完全一致,只不过是速度约束条件变为e(0)=me(r)=a利用约束条件确定三次多项式系数,有下列方程组:9=0+ax+口+aa,=a1+2a+3求解方程组3+出)=02)+七《+路径点上的关节速度,可出以下任一规则确定如果机器人末端操作器在经过路径点时冇速度要求,则可以利用此路径点上的逆雅可比矩阵,把该路径点的直角坐标速度转换成关节坐标速度。轨迹规划时则以此作为速度约来条件。如果某个路径点是机器人的奇异点,即此点的逆雅可比不可求,这时就无法求关节速度了;此外,在求各点关节速度时,要逐点计算逆雅可比矩阵,并依此计算关节速度,耗时较多。路径点上的关节速度,可由以下任一规则确定由控制系统采用某种启发式方法自动地选取合适的路径点速度。用三次多项式插值前,先假设各路径点之间关节运动速度是均匀的,即图中所示用直线段将这些路径点依次连接起来。规则选定:如果桾邻线段的斜率在路径点处改变符号,则速度选为零;如杲相邻线段斜率不改变符号,则选取路径点两侧的线段斜率的平均值作为该点的速度。因此,只要给定路径点,系统就能依此规则自动生成相应的路径点速度路径点上的关节速度,可由以下任一规则确定斗按照保证毎个路铚点的加速度连续的原则,由控制系统自动地选择路径点的速度。为此,可以设法用丙条三次曲线在路径点处按一定规则连接起来,拼凑成所要求的轨迹。拼凑的约束条件是:连接处速度连续,而且加速度也连续。7.2工业机器人的编程机器人编程方式机器人编程,是针对机器人为完某瓊作亚进拉程序投复的人的吧4国和力与编国性定环境中作诀上式有大关作业能方微计算机近自然路司匿人与机器实现各种机器人揉作机器人编程方法三种形式1、示教编程操作者必须把机器人终端移动至目标位置,并把此位置对应的机器人关节角度信息记录进内存储器,这是示教过程。当要求复现这些运动吋,顺序控制器从内存读岀相应位置,机器人就可重复示教时的轨迹和各科操作,这是再现过程。手把手示教」示教盒示教于把手示教要求用户使用安装在机器人于臂内的操纵杆,按给定运动顺序示教动作内容。示教盒示教则是利用装在控制盒上的按钮驱动机器人按需要的顺序进行操作示教编程优点:只需要简单的设备和控制装置即可进行。操作简单,易于掌握。示教再现过程很快,示教之后马上即可应用。示教编程缺点:编程占用机器人的作业时间艮难规划复杂的运动轨迹以及准确的直线运动;难以与传感信息相配合难以与其他操作同步;2、机器人语言编程实现了计算机编程,并可以引人传感信息,从而提供一个更通用的方法来解决人一机器人通信接口问题。目前应用于工业中的是动作级和对象级机器人语3、离线编程用通用语言或专门语言预先进行程序设计,在离线的情况下进行轨迹规划的编程方法。离线编程系统是基于CAD数据的图形编程系统。由于CAD技术的发展,机器人可以利用CAD数据生成机器人路径,这是集机器人于CIMS系统的必由之路、机器人语言编程早期的工业机器人,由于完成的作业比较简单,作业内客改变不频繁,采用鬥定程序控制或示教再现方法即可满足要求,不存在语言问题。机器人木身的发展,计算机系统功能日益完善以及要求机器人作业内容愈加复杂化,利用程序来控制机器人显得越来越困难编程过程过于复杂,使得在作业现场对付复杂作业十分困难。述北一一用机器人语言→[控制机器人动作(一)机器人语言的发展概况1973年,斯坦福大学人工智能研究室美国IBM公司1979年,美国 Unimation公司80,美国 Automatrix公司80,美国麦道公司(二)机器人语言的分类1、根据作业描述水平的高低分(1)动作级机器人语言VAL◆以机器人手爪的运动作为作业描述的中心◇用该级语言编写的作业程序,通常由使机器人手爪从一个位置到另一个位置的一系列运动语句组成。◆动作级机器人语言的每一条语句对应于一个机器人动作。2)对象级机器人语言- AUTOPASS今以近似自然语言的方式,按照作业对象的状态变化来进行程序设计以描述操作物体之间关系为中心的语言。今它不需要去描述机器人手爪如何动作,只要由操作者给出作业本身的顺序过程的描述及环境模型的描述,机器人即可自行决定如何动作。(3)任务级机器人语言◇最理想的机器人高级语言,是用被操作物体,而不是机器人的动作来描述作业任务◇使用者只要按某种原则给岀作业起始状态和作业目标状态,机器人语言系统即可利用口有的环境信息和知识库、数据库自动进行推呷、计算,最后白动生成机器人详细的动作、顺序和相应数据。◇须具冇判断环境、描述环境的能力;同时,也必须冇自动完成许多规划任务的能力。2、按表面形式分汇编型,如VAL语编译型,如AI、LM语言;自然语言型,如 AUTOPASS语言等;(三)机器人语言的特征机器人语言则包含语言本身、语言处理系统和机器人的工作环境模型三部分9盐理系恒外部乱音工件1.具有作业环境和作业对象的描述性。1)环境输入:视机器人语言水平不同,输入方法也不相同。目前的输入方法一般是由操作者与计算机的人机对话来进行的。将来随着视觉技术的发展,可能由机器人视觉的方法自动生成。〔2)环境建模:进行机器人编程时,需要描述物体三维空间的几何关系的语言,对操作物体的位置和姿态,操作物体之间的关系进行描述,并使之模型化。2)环境模型的修改、更新:在作业过程屮,操作物体的位置、姿态以及它们之间的关系一般随着作业而发生改变,语言系统要根据操作情况的变化来改变环境模型的内容。2.具有作业内容的描述性3.具有良好的编程环境4.具有人机接口和传感器接口功能机器人离线编程、离线编程的概念第一代工业机器人采用示教编程方式,无论是采用手把手示教或控制盒示教,都需要机器人停止原来的工作。而再现时若不能满足要求,还需反复进行示教进行一项任务之前,在现场编程过程要花费很多时间,这对于大批量生产的简单作业,基本还能满足要求。但是,随着机器人应用到中小批量生产,以及要求完成任务的复杂程度的增加,用示教编程方式就很难适应了。二、机器人离线编程随着计算机技术和机器人技术的不断发展,机器人与 CAD/CAM技术结合,已形成生产效率很髙的柔性制造系统(FMS)和计算机集成制造系统(CIMS)。这些系统中大量采用工业机器人,具有很高的适用性和灵活性一)离线编程的概念杋器人离线编程就是利用计算机图形学的成果,建立机器人及作业环境的三维几何模型,然后对机器人所婓完成的任务进行离线规划和编程,并对编程结果进行动态图形仿真,最后将满足要求的编程结果传到机器人控制柜,使机器人完成指定的作业任务。(二)离线编程系统的一般要求工业杋器人离线编程系统的一个重要特点是能够和CAD!CM建立联系,能够利用CAD数据库的资料。对于一个简单的机器人作业,几乎可以直接利用CAD对零件的描述来实现编程。三)离线编程系统的基本组成10

6
下载
380
浏览
2020-12-02发布

2. simpack动力学教程高级

最新的simpack学习资料!包括了铁路模块建模的较详细描述!为数不多的simpack学习资料!参考文献…316第1章绪论11背景介绍铁路的发展历史已绎将近一个世纪,现代轨道车辆应用最为广泛的就是旅客和货物运输。近二十年来,随着科技技术的迅猛发展,轨道车辆面临着髙速运行、降低能耗和缩减运营费用等迫切要求。由于车辆运行速度的不断提高,安仝和舒适度是人们一直关心的核心问题。这就对髙速列车的车辆的动力学特性设计提出了更为严格的要求,需要探明一系列影响列午运行安全的关键问题,诸如如何有效识别影响午辆舒适度和脱轨问题的动力学参数匹酉问题等,以便确保列车良好的安全特性。当然,对于车辆运行的舒适度和平稳度等问题,可以通过控制振动源和噪声源进行有效改善;对于脱轨和蛇形运动问题需要了解车辆的轮轨参数匹配和其他动力学特性参数设置。轨道车辆一般包括两种形式:一种是集中动力式列车,它主要由机车和车辆组成,机车负责牵引,木身并不载运旅客和货物,载运的任务主要由车辆承担;另一和就是分散动力式列车,常见的就是动车组,没有专门的机车提供动力,每节或几节车辆均具有牵引动力。从车辆动力学的角度看,机车和车辆具有相似的振动特征,而轮轨系统是车辆动力学分析的核心内容。车辆是具有弹簧悬挂和减振器等装置的多自由度振动系统,在运行过程中会产牛各种复杂的振动特性。而这些复杂的振动是由若干基本形式的振动组合而成。如今车辆逐步发展成为札械、力学和控制相互耦合的大系统,整夲的动力学特性的奷坏直接影响着夲钠运行的安全和舒适度。由于计算多体力学的进步和计算机软硬件技术的发展,人们可以通过并行⊥程仿貞的技术,建立详细的轨道车辆数学和物理计算模型,考虑各种复杂的边界条件因素,有效地硏究车辆动丿学性能,开发出高质量的新产品,提出列车运行的安全准则,因此车辆动力学的分析软件必然会在现代轨道车辆的研制过程中发挥越来越重要的角色,动力学分析涉及到内容主要包括如下几点:蛇形运动模拟,蛇形运动是轨道车辆在行驶过程中的一种特殊的现象,即当列车行驶时,突然出现车体和转向架开始剧烈左右偏转的不稳定振动现象。它容易导致车辆舒适度降低,出现破坏轨道,甚至发生脱轧、倾覆等安全事故。曲线通过能力计算如何保证车辆的良好曲线通过能力,使得车辆在曲线通过时,车轮对于轨道的横向作用力最小?舒适度评价车辆在各种复杂环境因素条件下的舒适度,诸如在轨道随机激励和冲击、设备振动、启动/制动、气动影响、高速会午,进出隧道压力波等条件下的车辆舒适度评价。脱轨和倾覆安全性评定研究保证车辆在高速运行吋不会脱轨机制,以及如何保证车辆在曲线通过时槓风的作用下防止车辆倾矍的问题。车辆被动和主动悬挂设计方式的选择悬挂方式的优化,以及如何有效地将控制技术应用在列车或车辆的动力学控制系统设计中,通过控制技术的运用,提高列车运行的安全性和舒适度。1.11铁路动力学分析软件的比较下血首先对国际上铁路领域流行的主要车动力学分析软件徹一个简单的介绍。o ADAMS( Automatic Dynamic Analysis of Mcchanical Systcms )/Rail ExftADAMS/Rail软件包是目前铁路车枘系统动力学数值分析的主流分析软件之ADAMS是由关国MDI公司于1980年推出的机械系统仿真软件,1993年,MDⅠ公司与荷兰铁路技术咨询公司合作,将现代轮轨动力学理论的计算方法逐步引入到软件中。1995年ADAMS/ Rail开始正式进入铁道车辆动力学分析领域。1996年MD公司与 Arge Care公司合作,采用 MEDYNA( SIMPACK公司的前身)软件的轮轨接触元素,2002年与英国的AEA公司( VAMPIRE软件的拥有者)形成战略合作关系,进一步增强了轮轨的计算能力。2002年MDⅠ公司为 MSC Software公司收购,并且逐步融入MsC的软件系统,在轮轨接触问题和计算速度上都有所提高, ADAMS软件在2005年前后被德国 Vi-Grade公司接管,软件开发日前进展不大。AMPIRE(Ⅴ ehicle dyn Amic Modeling Package In a Railway Environment)软件由英国铁路道比研究所1989年推出的 VAMPIRE软件,是专门针对铁路机车车辆系统开发的,软件具有自动建模功能,能够完成包括轮对模拟、蠕滑丿计算、轨道曲线、轨道不平顺输入以及动力学特性预测,程序也可以考虑刚体的模态。软件采用相对坐标系,通过人杋对话的方式来定义机车车辆结构的几何尺寸和参数,也可按规定格式输入数据文件,利用建模子程序,自动生成用矩阵形式表示的系统运动方程,給分析计算提供统一的模型。VAMPIRE建模比较方便,计算效率高,但仅能用于不带刚性约束的车辆系统分析计算,VAMPIRE侧重客车系统建模,计算功能全面。同样可以实现包括动力学、特征值、频域、随机振动、付或积分等计算分析及数据和图形、动画的后处理功能● NUCARS( New and Untried Car Analytic Regime Simulation)软件NUCARS软件是由北美铁路协会(AAR)下属的普耶勃罗试验中心(TC)开发的,其1.0版本在1989年面世, NUCARS软件也是应用多体系统动力学方法采用相对坐标系进行机车车辆系统的自动建模,由于其针对以货车为上的铁路机车车辆进行模拟计算,因此程序中嵌入了货车所特有的斜楔减振器以及心盘、旁承等摩擦模块,而且程序不像 MEDYNA那样庞人, Version2.1及以前版本的机车车辆系统数据准各均在文本环境竟中进行,在: Version23的版本中增加了较强的可视化前后处理功能。 NUCARS软件能够考虑玍体的一阶模态,可以进行车辆系统的时域内的动力学数值积分分析,其缺点是不便于求解特征值问题。●UM( Universal mcchanism)软件UM软件( Universal mechanism(简称UM))是俄罗期新一代的机械系统运动学力学仿真分析软件,通过建模求解,可以分析多体系统的振动特性、受力及位移、速度、加速度等参数,进而预测复杂多体系统的运动学动力学性能。它是由俄罗斯布良斯克国立理工大学( Bryansk State Technical University) Dmitry Pogoreloⅴ教授为团队研发的动力学分析软件UM是目前俄罗斯和部分东歐国家通用的机械动力学/运动学仿真分析软件之一。俄罗斯轨道车辆生产企业90%以上的车辆动力学仿真分析工作是使用UM完成的。UM的突出特点表现在:具有高效易用的前后处理功能,并支持并行计算技术;模坎众多,如汽车模块、铁道车辆(包括杋车、客车和货车〕模块、列车模垬、疲劳分析模垬及优化模块,还设有CAD软件、有限元软件及控制软件的接口;功能强人、适用性强,其子系统建模技术、冈柔耦合系统建模技术、强大的轮轨关系处理功能(如实时绘制轮轨两点接触作用力的曲线等)都使其具有良好的应用前景;UM软件还在轨道车辆的动力学研究中不断探索,如UM4中的道碴模型经过疒级后,可以硏究罐车的液固耦合振动问题,还可以研究运煤敞车、粮食漏斗车等散装物运输货车的压力分布。UM5已经丌始考虑车桥耦合振动问题。模型修改非常方便、计算速度较快。此外,UM软件还在内部嵌套了人量的便用功能,如计算器、滤波器等,使用非常方便。对计算三大件式转问架货车及机车的动力学性能来说,具有一定的优势。● Gensys及其他软件Ansys软件目前在车辆动力学的分析中也较为广泛,但是相对而言,资料比较缺乏,所以这里不再详细介绍。其他的还有很多国家相继研发了轨道车铟的动力学分析软件。这里仅介绍部分专业软件。具体如A’GEM( Automatic Generation of Equations of Motion)软件是由加拿大的 Queens University机械工程系硏制的。其轨道乍辆模块使用 AutoCad的图形界面,程序使用DOS执行处理的模块,可以计算轨道车辆的稳定性、舒适度、曲线通过性能,还可以计算其他轨道车辆的动力学性能。但是其在图形用界面、时频分析以及动画方面还有待改进。世南交通大学牵引动力国家重点实验室也相继廾发了 TPL Train的列车动力学分析软件和其下属列车线路研究所开发的“车辆轨道垂冋相互作用仿真分析系统ⅵCT”和车辆-轨道空间耦合动力学仿真软件系统 TTISIM软件”等铁路玍辆专业软件分析包。前者主要用于面对列车的纵向、横向和垂向动力学进行系统模拟研究;后二者主要用于研究机车车輖对轨道结构的动力作用问题,以及机车车辆在实际弹性轨道上的运行安全性与平稳性,只有很强的专业性正如基础教程中所介绍的那样, SIMPACK软件是国际著名的机槭系统运动学/动丿学仿真分析软件,其轮轨模块最新的市场占有率更是占有超过近60%的国际市场份额。其所具备的分析内容可以包括:整车系统振动特性、各部件的受力状况、加速度等:描述并预测复杂多体系统的运动学/动力学性能。轮轨模块〔包括:常规 wheel/rail模块、道岔分析模块和最新开发的轮轨磨耗(wear)预测模块)是德国宇航中心(DLR)集合20多年来轮轨接触模拟的经验和现代先进的模拟技术及常用模拟工具于一体的技术结晶,也是当前先进铁路车辆动力学仿貞软件的先驱之由于 SIMPACK软件立足自身开放性和非常灵活的建模概念,使其无论从独立轮对还是乍辆主动/被动控制系统,都可以支持设计者自由的设计思想,使得设计者能将更多的精力投入到只体设计工作的创新中。利用它人们可以对铁路复杂系统的动力学特性进行综合的仿真分析。 SIMPACK软什还具有和有限元分析(FFA)、 CAD/CAE以及CACE(控制)等软件的接冂程序,具有友好的操作界面,功能强大。且其轮轨模块经过大量铁路车辆试验验证具有很高的仿真精度和效率,长期不懈的努力和技术创新使得 SIMPACK已经成为国际上铁路领域多体系统动力学仿真工具领域的领导者之一。 SIMPACK的特色主要包括:(1)已经成为国际铁路行业设计标准的制定者目前为止,全球至少有100多种著名型号的跨国公司的轨道车辆是在 SIMPACK的帮助完成的设计,因此 SIMPACK软件凵经成为了目前全球铁路车辆系统动力学仿真的标准廾发工具。在DLR拥有20多名国际著名的铁路专家长期进行 SIMPACK软件的轮轨接触模型的开发,并进行了大量的匚程领域动力学分析的试验验证工作(2)不断创新,采用全新的轮轨接触模型。最新版本的 SIMPACK轮轨模块的具体特点在下一章节进行介绍。12 SIMPACK轮轨模块特点目前最新的 SIMPACK版木8900中具有全新的轮轨接触模型特点,木文主要还是以8800作为主要的软件进行介绍1)轮轨接触力采用新的计算方法计算轮轨接触斑上的接触力,获得车轮的法向力和导向力,它可以通过采用车轮和钢轨运动学约束模型荻得有效的计算结果,而不是传统的接触弹簧阻尼系统来计算得到,这样的优点在于其可以有效考虑轮轨之间的高频接触振动。而实际状况中,含有高频成分的车辆振动行为影响会人人降低时域内积分的步长,但是对于在给定精度内的动力学性能影响不大。因此采用的运动学约束计算方法可以大大地提高动力学计算的速度和精度,从而使得 SIMPACK快速满足行业的应用需求,并能使得其达到期望的水平。SIⅠ MPACK软件采用完全递归的计算方法,以及在相对坐标系中建立运动方程的算法,使其在计算轮轨接触时,可以建立最小数目的约束方程。同时 SIMPACK高效的建模操作和仿真速度,使SIMPACK成为铁路行业仿真分析的领导者。当然,也可以选择用传统的接触弹簣-阻尼模型取代运动学约束模型,来建立轮轨之问的接触关系。2)摩擦力SIMPACK提供了许多模拟轮轨之间的摩擦力的不同方法,最常用的就是 Kalker的简化非线性滚动接触理论,可以在计算结果和仿真精度方面取得较好的统一。软件中凵有用来建立自定义的轮轧摩擦的模块,可以很方便地在 SIMPACK中自定义轮轨接触模型,即允许用户来添加用户化的程序和内部算法到摩擦模型库中。3)等效线性化接触为了满足铁路车辆用于线性计算的)法,例如计算特征值或频域响应分析,需要一个等效线性化的轮轨接触模型。 SIMPACK带有一个高度自动化并经过大量试验验证的轮轨接触线性化模型,即等效线性化和协函数线性化。同时 SIMPACK也提供了利用输入笔效锥度和其它参数的方法来建立线性化模型的选项接触模型的特色:●可以对炣个车轮模拟三点及多点接触(踏面、轮缘和车轮背面);方便地选择不同的接触模型:釆用约束模型-极快的积分速度:单侧的弹簧阻尼模型-允许车轮抬起。考虑轮和轨的弹性,保讦了接触点处理的稳定性(DLR开发的方法);利用 Kalker理论计算切向力,也可以利用其它的(例如 Polach接触)或自定义的轮轨接触模型;摩擦系数和线路距离,车轮外型坐标以及接触点的相对速度有关;轮轨外型没有限制(标准和实测的)可以模拟滚动实验台的试验●简便的线性化的接触函数(等效线性化,协函数线性化)可以计算所有的相关的参数,如车轮力、滑动摩擦系数、接触斑的尺寸大小等;4)具有丰富的车辆建模元素数据库SIMPACK轮轨模块中的建模元素,以及用于建立多体系统中的标准元素是完全兼容的。在软件使用过程中,人们可以利用软件实现参数化和子结构建模,扩展轮轨的模型库快速地建立铁路系统的模型,另外可以利用 SIMPACK对预定义的模型结构。 SIMPAOκ提供了良好的灵活性来文持用于现代铁路系统解决方案的仼何边缘技术。所有车辆部件或线路均可以处理成弹性体,尤其是舒适度分析时,考虑车体的弹性十分的必要。轮对和转向架的弹性也可能对车辆的动力学性能产生很大的影响。目前在 SIMPACK中有两种方法可以处理结构的弹性。利用 SIMBEAM模块来建立结构的弹性;从FEA软件中输入弹性零部件SIMPACK中有一个具备典型铁路车辆的建模圹展库,例如空气弹簧、高圆弹簧和摩擦元素等,任何个元素均可以根据需要进行参数的优化。在 SIMPACK中,所有用于铁路车柄的特殊元素和通用机槭系统的建模元素可以完仝兼容,因此简单的铁路车辆模型可以很方便地扩`展成现代的摆式车和径向转向架模型。通过一个附加的界面友好的轮轨模块中心窗口,就可以得到所有的铁路模型参数。然后通过这个窗口对车轮钢轨的外形尺寸、车辆轮对的车轮半径、线路超高等所有的参数进行修改。设计者还可以充分利用 SIMPACK已有的现成模型,例如两轴客车转向架。货车转向架和单轴转冋架,利用这些标准模块,根据需要改变这些模板中的设计参数,建立自定义的模型。无论是传统的轮对还是独立的轮对,轮轨模垬提供了很多种解决方法,所冇这些都被无缝集成在通用机械的多体分析系统中车轮或独立车轮没有限制车轮装忾●弹性车轮(FE模型的集成)●非正常车轮和多边形车轮几乎任何一个 SIMPACK软件版本中使用的建模儿素都可以添加到数据库中,不仅在几种车辆中可以使用同一种结构形式的转向架,而且任何一个建模细节,例如一个车体元素、空气弹簧、止挡、牵引系统和抗侧滚扭杆等,都可以当成一个独立的给定子结构。对」子结构的修改将会影响到所有的和其相关的主模型,除非选择了在模型中包括子结构,以保讦它不会改变。5)线路定义、轨道不平顺及踏面外形在 SIMPACK的轮轨模块中,线路的定义是通过一条整体线路,然后叠加不平顺线路来生成,它们可以单独处理和生成。线路模型不仅可以包括轨道,而且可以包括线路的不平顺、线路的弹性以及轨道子结构。条完整的线路可以利用标准库中的元素(曲线通过吋的进入、驶出、道岔等参数)和其他少量的参数,如长度、半径和线路界面的超高来定义。直线和曲线端π以根据需要进行连接,可以在维控制窗口中绘制曲线,并自动转换为三维图形表示。另外,对于实测的轨道数据如垂冋和水平曲率、线路超高等都可以直接从文件中读入到模型中软件中可以利用的三种类型的不平顺:确定性函数(正弦、阶跃和锯齿函数),随机函数(用PSD定义)以及给定的溦扰函数(根据现场实测的衣格格式的数据)。不平顺可以独立地作用在每一侧钢轨上,也可以做成一条随两股钢轨轨矩变化的函数。最后为了扩展已有的标准外形库,任意的午轮和钢轨外形是利用一个专门的前处理程序来完成,即利用样条函数来拟合截面的外形,并将其处理成仿真用的数据。截面的外形数据可以用来实际测量的保存为ASCⅡ代码格式的表格形式。其他的特点还包括SIMPACK中的轮轨建模能够实现所有参数化采用标准的线路形式:直线、曲线(考虑进出曲线)S-曲线轨道及道岔等输入实际运行线路图;●线路不平顺(轨道文件输入的ASCⅡ烙式,或者采用功率谱密度PSD多项式形式);●轨枕和或钢轨的弹性扣件;不同的钢轨外形(沿车轮的纵向位置);●每个车轮可以允许有三点接触的转辙(道岔)进行实际线路的滚动试验台的模拟;●考虑线路弹性。6)轮轨的应用领域SMPA(K软件最新版本的轮轨模块可以解决目前几乎所有的铁路车辆的动力学仿真问题,满足在频域或吋域中车辆动力学仿貞计算。每个使用者都可以快速和方便地分析自己建立的动力学模型,这一点对缩短车辆新产品的开发周期也是非常必要的。基于特征值的动力学分析计算模块,可以计算荻得车辆的稳定性轨迹计算。这也是 SIMPACK软件系统的一个标准的通用后处理工具;通过时域积分计算可以计算获得车辆的稳态及动态曲线通过时的可靠计算结果。而且可以对参数化的樸型进行不同的参数变化,研究不同的设计方案(1)对含有轨道不平顺的线路的时域分析中,主要仨务可以包括:车辆乘丛舒适度曲线通过的性能稳定性;轮轨作用力;部件失效;脱轨;●可靠性等。(2)准静态分析(曲线通过性能的分析)(3)线性特征值分析(4)线性系统的分析频率响应,功率谱线性稳定性图(5)参数变化研究及参数优化(6)独有的转辙(道岔)动力学分析(7) SIMPACK新版本的其他几个突出的应用:①车桥耦合SIMPACK软件可以将由有限元描述的弹性桥梁结构引入到 TRACK中,并进行复杂的车桥耥合分析。冋时可以进行道岔分析(也称转辙分析)。这个轮轨模块的新特点也是冋类软件中,目前唯一可以处理和模拟道岔复杂的动丿学问题的分析软件。车辆的道岔动力学分析与常规标准的轮轨分析主要有两个显著的区别:钢轨的外形必须是线路坐标的函数;除踏面和轮缘接触外,在轮缘的背面和导轨、冀轨之间存在接触。为了定义道岔,在 SIMPACK中采用了一个专门的特殊程序,将沿钢轨界面测量得到的钢轨的外形以ASCⅡ的文件格式数据保存,处理成近似的钢轨的外形,并自动产生道岔全三维的外形②悬链系统通过和德国铁路的悬链仿貞⊥具 Prosa的协同仿貞, SIMPACK可以模拟扃速铁路的悬链系统。这样的好处是可以有效地模拟车猁受电弓的动力学特性,使得模型的动力学分析结果更加准确。同时,在车锕动力学模型中将会考虑悬链系统的柔性、控制系统和受电弓等因素的综合影响。经过大量的实际线路的试验验证,可以保证 SIMPACK软件是一个高度实验化的可靠的仿真软件。另外,利用 SIMPACK强大的弹性体处理和接触技术(包含弹性体几何刚度非线性)可以直接利用 SIMPACK软件自身建立悬链系统,在国内外已有应用的案例。③流固耦合SIMPACK软件的最新版本中已经成功地解决货车振动与罐中液体之问的非常复杂的流固耦合的作用。④参数化微分方程的计算需要进行一系列大量的参数优化计算。由于其独特的算法和快速的求解器可以实现参数化,计算过程的控制结构的后处理的自动化。由于 SIMPACK软件开放和先进的数据结构以及大量的和其他软件的接∏,使得它可以成为伴随铁路车辆系统的和设计创新的有利工具。利用 SIMPACK先进的模拟环境,可以保持产品的领先和创新,并具有竞争力成为可能。1995年 SIMPACK最早实现从FEM软件中引入蝉性的车体,加上自身强大的轮轨接触建模和高效的求解器的能力,保证了采用轻量化车体结构的高速列车的舒适度。现在全球许多铁路客户已经丌始使用其FE模态来实现舒适度的动力学计算,为产品降低风险和成本SⅠ MPACK具有通过自身的控制模块和CACE软件例如 MATLAB/Simulink或自己编制的程序来实现杋械系统和控制系统的协调仿真,从而使得现代轨道车辆利用虚拟样机概念向摆式系统驱动系统以及创新的驱动系统方向提供了条件。⑥模型验证轮轨模块重点放在髙水平的车辆动力学仿貞精度上,特别是如何改善轮轨接触模型的建模能丿。 SIMPACK的计算结果都是通过一系列的标准考题(比如ERRI考题; IAVSD考题以及曼彻斯特考题等)和实际测量的数值结果进行严格的验证。最主要的结论也是通过ERRI(欧洲铁路研究所)以及德国铁路管理部门联合进行分析和实验结果的相互验证后待出的结果。实验的方案,⊥要是针对不同类型的货车和一个三节车组成的货物列车进行了大量的反复试验比较,轮轨导向力和轮对的主要动力学分析指标的试验结果和分析计算结果有很好的吻合。另外德国慕尼黑的铁路车辆滚动实验台以及DLR开发的1:5的比例滚动台上进行了大量的试验验证。同时,在每次推出软件新版本的功能开发后,都会进行不同的转向架模型的对比计算和试验。除了 SIMPACK自身的轮轨接触模型试验外,铁路车辆的一些主要的部件和子系统的模型都在进行不同课题内容的重点研究,例如可控的单个车轮的悬挂系统和新廾发的悬链系统(接触网)的饼究等13动力学软件在工程中的应用多体系统动丿学分析软件的主要应用领域还是在车辆动力学的工稈问题研究。目前在国内外机械动力学系统的发展中,动力学分析已经和有限元分析、控制系统等多个并行上程相互结合补充和优化,克服在结构动态设计中很多机械系统纯力学机制存在的缺陷问题,如可以减少因为动载荷过大导致的各种能量损耗、噪音和结构磨损及其他尖效问题的产生。下面结合国外部分文献对国内外部分铁路车锕动力学的发展和应用进行简单地阐述。可以说在这些铁路车辆新产品的每一步开发中几乎都离不开 SIMPACK的帮助。具体如图1.1-1.7所示。199420002007Non linear kinematicsFlexible body simulation New SIMPACK Rail图1. I SIMPACK在铁路产品中开发应用( SIMENS)Verification Behavior of a realistic vehicleModelArticulated train96 degrees of freedom175 force elementss 2 bogies with wheelsets2 bogies with independent wheels1 suspended car bodyScenarios: Non-irearlow-speed narrow CLwith twisthigh-speed curve withunbalanced lateralaccelerationtangent track withstochastic irregularitiess-curve图1.2列车模犁及其采用的元素情况10

25
下载
1467
浏览
2020-12-09发布

3. matlab 实现线性调频信号以及分析处理

里面有关于实现matlab的算法以及分析处理山国科技记文在线分布的时频平面作直线积分投影的变换,统称对信号作变换在分布的时频平面里惯用轴的截距和斜率为参数表小直线。因此,当需要沿作直线积分时,可将积分路径(直线)的参数(u,a)替换成()日两对参数之间的关系为:m=-cot,w=! sina。若求信号的变换,并以参数表示积分路径,则有:D.a=PQ线w, (t, wB u-u du∫r(,n)ma(w-mn-m)nh∫m(,w[一(m+motcw lt, wo +mt dt/sinaWo=u/sina上式表明,若是参数为和的信号,则积分值最大;而当参数偏离与或时,积分值迅速减小,即对‘定的信号,其变换会在对应的参数处呈现尖峰。我们自然会想到:多分量的信号的特性在平面里更加突出。即表现为各个尖峰,因而更有利于区别交叉项和噪声。利用变换一定能够获得更好的性能。作为时频分析方法之一,分数阶傅里叶变换ˉ与分布()变换()分别有着一定的数学关系,借助它们的联系,可进一步说明分数阶傅里叶变换的物理意义。信号的分布函数的定义为t+=xtde作为能量型时频表示满足许多期望的数学性质,这里给出其边缘特性X tt wdvXw=wtwat对WD旋转C角度,即对分布实施变换,其结果是RWIW=∫f山国技记文在线而信号的阶分薮阶傅里叶变换X。t的就是将信号的旋转c角度,即对于分数阶傅里叶变换只有旋转不变性,所以有X u= wtP可以看出,对时间轴与频率轴的积分分别是信号在时刻的瞬时功率和信号在频率的谱密度,而信号的对与时间成c角度的轴的积分投影对应着角度为a的分数阶傅里叶变换的幅度平方,这进步从能量的角度说明分数阶傅里叶变换作为广义傅里叶变换的含义。正弦信号在时频平面是一条平行于时间轴的直线,即它的频率不随时间变化,可视为旋转角度为°的完全时间域表示;冲击朕数在时频平面是一条平行于频率轴的直线可视为旋转角度为°的完全频率域表示;信号在时频平面是一条斜率为调频率的直线,当该信号的某一角度的分数阶傅里叶变换与其调频率一致时,在无限长度的理想情况下,表现为幅度为无穷大的冲击,在信号长度有限的情况下,其分数阶傅里卟变换呈现极大值这就是信号在分数阶傅里叶变换域的特点。离散 Chirp fourier变换是最近提出的一种有效的线性调频信号检测技术,它 Fourier变换的一种推广形式,可同时匹配 chirp信号的中心频率和调频率。本文利用修正离散Chirp- Fourie交换( MDCFT)实现干扰信号的检测和参数估计,从而实现对干扰的自适应抑制。分析和仿真表明,该方法可对FM干扰有着极好的抑制效果;同时,由于 Chirp- Fourie变换是维的线性变换,可借助快速傅里叶变换(FFT〕实现,与基于WVD的算法相比,不仅避免了交叉项十扰,而且降低了计算的复杂度,其实现更为简使3.基于Mat1ab的上机仿真过程及结果分析3.1对单分量信号的仿真及结果分析():输入解析信号为x()=eb的分布:40,图单分量信号的分布山国科技论文在线在上述解析信号中加入噪声后,用分布分析其性能图加入噪声的单分量信号的分布由图可以看出实际结果与前面的理论推导致。在实际应用中,信号长度总是有限长的,此时分布呈背鳍状。由图可以得到变换对噪声不太敏感,时频变换后信噪比较高。但当干扰的幅度大到一定程度时,变换的结果会严重变差,甚至分析不出结果。():前两个图是输入解析信号为x(t)=em的变换,后两个图是在这个解析信号中加入噪声以后用变换对其进行的分析:400C501m01501020100150图单分量信号的变换由理论分析可知,当旋转角度与线性调频信号的斜率相這应时,变换将出现一个峰值。这个分析在图中得到了证实。():图前两个图是输入解析信号为x()=e的分数阶傅里叶变换,后两个图是在山国科技论文在线这个解析信号中加入噪声以后用分数阶傅甲叶变换对其进行的分析:分数阶傅甲叶变换变换与变换的紧密联系在图和图的仿真中也可以得到证实HOD50图单分量信号的分数阶傅里叶变换():图的前两个图是输入中心频率是,调频率是的单分量线性调频信号后的Chirp- Fourier变换,后两个图是在这个信号中加入噪声以后用 Chirp-Fourier变换对其进行的分析。通过这个仿真,还将证明一个重要性质: Chirp- Fourier变换可同时匹配线性调频信号的中心频率和调频率的82a图单分量信号的 Chirp fourier变换比较结论:从以上几个仿真图形可以看出,对单分量的信号而言,上述几个变换山国科技论文在线都有非常好的时频聚集性,特别是分布与理论结果完仝一致。在抗噪声方面,对比几个图可知,变换和 Chirp- Fourier变换要比分布和分数阶傅里叶变换吏好。而对于分数阶傅里叶变换和分布,分数阶傅里叶变换的抗噪声性能要好3.2对多分量信号的仿真及结果分析个多分量的线性调频信号的D15020心Dm图多分量信号的一个多分量的线性调频信号的变换50.540多分量信号的变换山国科技论文在线个多分量的线性调频信号的分数阶傅甲叶变换:图多分量信号的分数阶傅里叶变换个多分量的线性调频信号(含两个分量,中心频率和调频率分别为k=)的 Chirp- Fourier变换50299,Q图多分量信号的 Chirp-fourier变换比较结论:从以上四个图可以看出,对于多分量信号,分布由于存在交叉项,时频面模糊不清,而其他三种变换则可以检测到两个信号。从图中还可以看到,Chirp- Fourier变换的效果是最好的。而且我们从图中还可以清楚地看到线性调频信号的中心频率和调频率。4LFM信号的应用线性词频)信号广泛地应用于雷达、声纳和通信等信息系统中。在这类系统中,信号的检测与参数估计是个重要的研究课题,受到特别的关注。下面给出一个基于FRT的MTD雷达信号处理过程的防真实例。假设有一个运动目标,回波信号为Stjn∫t-jwt+nt,其中nt为杂波信号,信号参数为nt是均值为零,方差为的高斯白噪声,信噪比为,观测时间为,采样频率为采样点数为N采用分数阶域的扫描上算法对该冋波信号作计算机仿真,仿真结果如图所从图中可以清楚看到一个LFM信号的存在,而闬目标的峰值非常突出,受杂波的影响相对较小。因此采用FRT的MTD雷达的抗干扰能力较强。另外由于日标的特征非常明显,可以通过适当提高杂波门限的方法来减小虚警概率山国科技论文在线图基于ⅣRFT的MTD雷达信号处理过程的防真5结束语非平稳信号是现代信号处理的主要研究对象之一,对其有很多种理论分析方法。本文介绍的分布,变换,分数阶傅里叶变换,变换是其中比较常用和重要的几种。本文对这几种变换做了初步的介绍,进而对它们进行了一些比较这有助于进一步了解各种变换的性能和作信号分析时选择合适的变换。时频分布之所以受到很多研究人员和信号处理领域的工程人员的重视,是因为它有很多传统傅立叶变换所不具备的性质。由时频分析的定义可知时频表示能给出信号在时域和频域的信息。经过儿年的发展,时频分析理论趋于成熟,并遂渐在实际应用中崭露头角,近年来已在实际的非平稳信号处理中获得了十分广泛的应用。如:信号检测与分类,吋频域滤波,信号综合,系统辩识和谱估计等。在的期刊和国际会议上发表的与采用时频工具处理非平稳干扰有关的论文及研究报告共有余篇,其中以美国大学教授的成果最为显著。时频分析是一个前景很广阔的研究方向,虽然取得了一定的成就,但理论体系尚不十分完备,需要进一步的发展。参考文献[1ˉ张贤达,保铮《非平稳信号分析与处理》[M1998年9月第1版国防工业出版社[2ˉ沈民奋,孙丽莎《现代随机信号与系统分析》M年月第版科学出版社[3丁凤芹,曹家麟《基丁分数阶傅里叶变换的多分量 Chirp信号的检测与参数估计》《语音技术》2004年第1期[4_孙泓波,郭欣,顾红,苏上民,刘国岁《修正 Chirp- Flourier变换及其在SAR运动目标检测中的应用》《电子学报》2003年第1期山国技记文在线[5董永强,陶然,思永,王越《基丁分数阶傅里叶变换的SAR运动目标检测与成像》《兵工学报》1999年第2期L6_陶然,齐林,王越《分数阶 Fourier变奂的原理与应用》LM」2004年8月第1版清华大学出版社[7董永强,陶然,周思永,王越《含未知参数的多分量 chirp信号的分数阶傅里叶分析》《北京理工大学学报》1999年第5期[8ˉ陈辉,王永良《利用离散 Chirp- Flourier变换技术估计调频信号参数》《空军雷达学院学报》2001年第1期[9ˉ齐林,穆晓敏,朱春华《系统中基于 Chirp- Fourier变换的扫频干扰抑制算》《电讯技术》年第期[10]李勇,徐震等《 MATLAB辅助现代工程数字信号处理》[M2002年10月鷥1版西安电子科技人学出版社「111胡昌华,周淘,夏启兵,张伟《基于 MATLAB的系统分析与设计—时频分析》「M12001年7月第1[2]干小宁,许家栋《离散调频-傅里叶变换及其作雷达成像中的应用》《系统工稈与电子技术》2002年第3期

29
下载
667
浏览
2020-12-02发布

4. 基于LabVIEW的数据采集与处理技术

labview编程 基于LabVIEW的数据采集与处理技术 白云 高育鹏922 LabsQL的安装及配置…185102.1 Labview中的数字仿真简介…20392.3 LabsQLⅥ模块及使用方法……1871022 LabvIew中的数字仿真本章小结.201算法模块203练习与思考…本章小结…215第10章 LabviEw与仿真技术…02练习与思考21610.1仿真技术概述…02参考文献…21710.2LabⅤIEW中的数字仿真…203第1章虚拟仪器技术命器DDC第1章虚拟仪器技术NICFS-C3器好,来案是1.1虚拟仪器概述萨好14器外口约D1.11虚拟仪器的基本概念所谓虚拟仪器 Virtual instrument,Vm,是指以通用计算机作为系统控制器,由软件来实现人机交互和大部分仪器功能的」种计算机仪器系统。用户操作这台通用计算机就像操作一台为自己专门设计的传统电子仪器样。虚拟仪器的出现,使得测量仪器与计算机之间的界线逐渐模糊。总虚拟仪器通过o接口设备完成信号的调理、采集与测量,利用个人计算机强大的软件功能实现信号数据的运算、分析、处理,由个人计算机显示器模拟传统仪器的控制面板,以多种形式输出检测结果,从而完成各种测试功能。“虚拟”二字主要包含以下两方面含义:(1)虚拟仪器的面板是虚拟的。虚拟仪器面板上的各种“控件”与传统仪器面板上的各种“器件”所完成的功能是相同的。程传统仪器面板上的器件都是实物,需要通过手动或触摸进行操作;而在虚拟仪器中,物理的开关、按键等器件均由与实物外观相似的图形控件来代替,它们分别对应着相应的软件程序。这些程序是已设计好的,用户可直接通过鼠标或键盘操纵这些控件来完成对仪()虚拟仪器的测量功能是由软件编程来实现的。在虚拟仪器系统中,硬件仅仅用来处的操控n101i理信号的输入输出,软件才是整个测试仪器系统的关键。用户可以通过软件编程来实现仪器的测试功能,还可以通过组合不同测试功能的软件模块来实现多种测试功能。当测试要求发生变化或者需要增加(减少)测试项目时,用户只需要适当地更改软件程序,即可生成满足测试要求的全新的测试仪器系统。因此,在硬件平台确定后,有着“软件就是仪器”的说法,它体现了测试技术与计算机深层次的结合。壁1.1.2虚拟仪器的构成从内部功能来讲,虛拟仪器与传统仪器一样,均由数据采集与控制、数据分析与处理及结果显示三部分组成,如图1-1所示。以总的游关样其平南OM的,对,当的器外,中亲2基于 LabVIew的数据采集与处理技术采集与控制数据分析与处理结果显示插入式数据采集板数字信号处理网络通信GPB仪器数字滤波硬盘拷贝输出XPX仪器统计分析文件10RS232仪器数值分析用户图形接口图1-1虚拟仪器的内部功能划分从构成要素来讲,虚拟仪器由硬件系统和软件系统两大部分组成,如图1-2所示。硬件系统软件系统广============--------------------=信号调理数据采集卡GPI接口仪器GPIB接口卡应用软件|仪器是加1.1,1串行接口仪器仪器个被通|s器功对测对 VXUPXI仪器用计算/能动应人机程用长合现场总线设备用P回过大管计个图像釆集、数字信号处理件上虛户拟下中舍面其他硬件模块板示释等外围硬件设备向面流器进重()图1-2虚拟仪器的系统构成回的雨“器1.虚拟仪器的硬件系统集干要,求景器书器的避面器虚拟仪器的硬件系统通常包括通用计算机和外围硬件设备。其中,通用计算机可以是笔记本电脑、台式机或工作站等。外围硬件设备可分为GB( General Purpose Interface Bus)VXI(VMEbus eXtension for Instrumentation), PXI(PCI eXtension for Instrumentation) FLDAQ( ata Acquisition)四种标准体系结构。构成系统时,可以选择单一的,也可以选择由两种或两种以上硬件系统构成的混合系统。其中,最简单、最廉价的形式是采用ISA或PCI总线的数据采集卡,或是基于RS-232或USB总线的便携式数据采集模块2.虚拟仪器的软件系统平合虚拟仪器的软件系统从底层到顶层共包括三部分,即vSA(O)库、仪器驱动程序与应用软件。1)ⅤISA库的器VISACVirtual Instrumentation Software Architecture即虚拟仪器软件体系结构,实质是标准的IO函数库及其相关规范的总称。一般称这个LO函数库为VSA库,它驻留于计算机系统之中,执行仪器总线的特殊功能,是计算机与仪器之间的软件层连接,可实现对仪器第1章虚拟仪器技术13的程控。对于仪器驱动程序开发者来说,它是一个个可调用的操作函数集。不2)仪器驱动程序仪器驱动程序是完成对某一特定仪器控制与通信的软件程序集,它是应用程序实现仪器控制的桥梁。每个仪器模块都有自己的仪器驱动程序,仪器厂商将仪器驱动程序以源码的形式提供给用户。D情总分能器对期干善。高研善淀3)应用软件应用软件建立在仪器驱动程序之上,直接面对操作用户。它通过直观、友好的测控操作界面,丰富的数据分析与处理功能,来完成自动测试任务。虚拟仪器应用软件的编写大致可分为两种方式:总面(1)用通用编程软件进行编写。通用编程软件主要有 Microsof公司的Ⅴ sual Basic与Visual c++、 Borland公司的 Delphi、 Sybase公司的 PowerBuilder等(2)用专业图形化编程软件进行开发。专业图形化编程软件如HP公司的VE、NI公司的 Lab vIew和 Lab windows/CⅥ等应用软件还包括通用数字处理软件,它主要由用于数字信号处理的各种功能函数(如频域分析的功率谱估计、FFT、FHT、逆FFT、逆FH和细化分析等;时域分析的相关分析卷积运算、反卷运算、均方根估计、差分积分运算和排序等)及数字滤波等部分组成。这些功能函数为用户进一步扩展虚拟仪器的功能奠定了基础113虚拟仪器的特点14虚拟仪器具有如下六个特点1)突出“软件就是仪器”的新概念,用户可自定义测量功能在通用硬件平台确定后,可由软件取代传统仪器中的硬件来完成仪器的功能。软件的灵活性和复用性使用户可以按自己的需要定义(设置测量功能,这就给用户提供了一个充分发挥自己能力和想象力的空间。2)强大的数据处理功能。虚拟仪器将信号分析、显示、存储、打印和其他管理交由计算机来集中处理,充分利用了计算机强大的数据处理、传输和发布功能。信号处理理论的不断完善以及计算机运算速度的大大提高,为虚拟仪器快速、准确地处理数据提供了良好的基础。(3)灵活性和可扩展性强,性价比高,便于组成复杂的测试系统。当希望测试系统增加个新的测量功能时,只需通过增加软件来执行新的功能或增加一个通用模块来扩展系统的测量范围;为提高测试系统的性能,可以通过加入一个通用仪器卡或更实现,这样有利于系统的扩展,也可大大节约购买和维护仪器的费用(4)良好的人机界面。虚拟仪器的操控界面是一种虚拟面板,亦称为软面板。虚拟面板可以模拟传统仪器面板的风格来设计,也可以由用户根据实际需求自行设计。测量结果可以通过计算机显示器以曲线、图形数据或表格等形式方便灵活地显示出来。(5)与其他设备互连的能力强。虚拟仪器通常具有标准化的总线或通信接口,具有与其他设备互连的能力。近年来,随着网络技术的发展,已经形成了网络虚拟仪器。这是一种新型的基于Web技术的虚拟仪器,它使得虚拟仪器测试系统成为 Internet/Intranet的一部分,可实现远程测试、监控和故障诊断等功能,以便充分利用有效资源,提高测试效率(6)技术更新快。由于虚拟仪器技术是建立在当今世界最新的计算机技术、数据采集技4基于 Labview的数据采集与处理技术术和通信技术基础上的,因而技术更新速度快于传统仪器。界搭对干,登路器界(S1.14虚拟仪器接口总线技术器对宝一某量平器为随着计算机技术、测试仪器和测试技术的不断发展,虚拟仪器接口总线技术也得到了不断的完善和提高。目前用于虚拟仪器和测试系统的总线技术有GPIB总线、VX总线、PX总线、IEEE1394总线和USB总线等。科(1.GPB总线,器器为立游GPB在20世纪70年代由惠普公司率先提出,经批准后成为IEE488标准,是业界所接受的第一个程控通用仪器总线。GPIB包括IEEE4881-1978标准和IEEE4882-1987标准两部分,前者定义了硬件标准,后者则定义了软件标准。GPB总线接口有24线(EE488标准)和25线(IEC-625标准)两种形式,其中以IEEE488的24线GPB总线接口应用最多在我国,国家标准中规定采用24线的电缆及相应的插头插座。如今,GPB已经成为计算机与仪器间最通用的总线标准。由于历史悠久,GPIB具有广泛的软/硬件支持,几乎所有的独立仪器都配有GPIB接口。因GPIB的最大带宽为18Mbs(最新的高速版HS488更是将最大带宽提高到了8Mb/s,所以最为适合与分立仪器通信,并对分立仪器进行控制。GPB中的数据传递采用基于信息的通信模式,并常使用 AScII字符。北用长典型的GPIB测试系统包括一台计算机、一块GPIB接口卡和若干台GPIB仪器,其总距为20m,带宽为总线上的所有仪器共享。GPIB测试系统的仪器之间可采用总线型连接或星型连接,如图1-3所示。每台GPIB仪器有单独的地址,由计算机控制操作。整个测试系统中的仪器若要增加、减少或更换,只需对计算机的控制软件做相应改动即可。中升如柱(置如)义宝要害x的大资,里中果来时出于,卦活仪器A仪器C仪器A仪器B仪器D仪器C仪器B不是探(a)图1-3GPB测试系统仪器间的连接方式界益为(a)仪器间采用总线型连接;(b)仪器间采用星型连接」甲第1章虚拟仪器技术」-5GPIB测试系统的结构和命令简单,有专为仪器控制所设计的接口信号和接口插件,具有突出的坚固性和可靠性。网络上也有各种GPHB驱动,因而具有较好的兼容性。GPIB适用于现有的自动化测试设备、混合测控系统和有特殊要求的专用仪器系统。GPIB的缺点是无法提供多台仪器同步和触发的功能,在传输大量数据时带宽不足。前目率解卦目2.V总线日(2 uH Lense IBas in)a2uwx即ME总线在仪器领域的扩展,它于1987年,由主要仪器制造商在ⅥE总线Eurocard标准(机械结构标准)和EE488等基础上,共同制定的开放性仪器总线标准。目前,国际上有两个VX总线组织:一是VⅪ联盟,负责制定vXI的硬件(仪器级标准规范,包括机箱背板总线、电源分布、冷却系统、“0槽”模块、仪器模块的电气特性、机械特性电磁兼容性以及系统资源管理和通信规程等内容;二是vX总线即插即用vxPg&Pay,vP系统联盟,宗旨是通过制定一系列VX的软件系统级标准来提供一个开放性的系统结构,真正实现ⅴXT总线产品的“即插即用”。这两套标准组成了VXI标准体系,实现了VXI的模块化、系列化、通用化,提高了vX仪器的互换性和互操作性。E1VX系统最多可包含256个装置,主要由主机箱、“0槽”控制器、具有多种功能的模块仪器和驱动软件、系统应用软件等组成。系统中各功能模块可随意更换,即插即用,可组成新系统。1998年,VⅪI20版采用了VME总线的最新扩展技术,提供有64位的扩展能力,数据传输率可达80Mbs,而且经过段时间的努力,VⅪI总线系统已成功地应用于微波频段。目前,可用的VⅪI仪器已有将近2000种,并还在以每年150~200种的速度增加,基本上可以满足绝大多数VXI系统的需要。1X,1MO0C,mis2m由于ⅴⅪI的价格相对较高,而且许多GPIB仪器还能满足实际的需要,再则在集成XI系统时,需要有系统设计能力、系统调试经验、误差分析修正定标、校准技术及测试程序开发能力,因此ⅴⅪI仪器的使用和推广受到了一定的限制。目前,VXI主要应用于国防、航空航天、通信以及其他需要高性能、高质量、大批量产品的生产环境或实验室及研究开发中。回计,到为类,中时测交,器由积封主3.PX总线未站以1即法原以,重下DPⅪI是PCI在仪器领域的扩展,N公司于199年发布的一种新的开放性、模块化仪器总线规范,其核心是 CompactPCI结构和 Microsoft windows软件。PⅪ是在PCI内核技术上增加了成熟的技术规范和要求而形成的。PXI增加了用于多板同步的触发总线和参考时钟、用于精确定时的星型触发总线以及用于相邻模块间高速通信的局部总线等,以满足试验和测量用户的要求。PⅪI兼容 CompactPCI机械规范,并增加了主动冷却、环境测试(温度、湿度、振动和冲击试验等要求。这样,可保证多厂商产品的互操作性和系统的易集成性。与ⅴⅪI模块相比,PⅫⅪ模块体积更小、传输速率更高、价格也较便宜,而且组建一个PX系统要比ⅴX系统简单。PX与台式机的区别在于,Px将计算机和插卡式仪器模块安装在带有许多护展槽的工业机机箱中。从软件角度上说,安装个PⅪ模块就像在台式机上安装一块PC卡,PXI模块作为标准的即插即用PCI器件能被自动识别和设置,并配置有相应的 Windows驱动程序。由于PXI和主流计算机技术完全兼容,因此在许多测试领域,由台式机组成的系统与PX系统可以相互替代,而且PX1系统在性能上还远远超过了台式机。,的d3W6甚于 LabVIEw的数据采集与处理技术4.USB总线和E1394总线独速UsB总线和IEE1394总线是日前广泛使用的两种总线接口,它们支持热插拔,可以自动识别、自动组态,实现即插即用。与并行总线比较,它们更适合连接多外设的需要,且传输速率高,目前已有一些测量仪器使用了这两种总线,回器合费USB( Universal serial Bus)主要用来连接外围设备,如键盘、扫描仪、磁盘机等。苹果电脑率先于1998年使用USB做为其唯一的串口,目前在PC机上已被广泛使用。由于其即插即用的易用性和USB20高达480Mbs的传输速率,USB总线已逐渐成为仪器控制的主流总线技术。USB总线只有一对信号线和一对电源线,轻巧简便、价格便宣,能连接127个装置。现在计算机上的USB接口越来越多,这使得工程师可以很方便地将基于USB的测量仪器连接到整个系统中。但是USB在仪器控制方面亦有一些缺点。比如说USB的排线没有工业标准的规格,在恶劣的环境下,可能造成数据的丢失;此外,USB对排线的距离也有一定的限制。1如到IEEE1394总线又称火线总线,是苹果电脑公司于1989年设计的高性能串行总线,目前的标准为IEEE1394-1995。IEE1394总线的传输速率为100Mb/s、200Mbs、400Mb/s,甚至可以达到32Gbs。EE1394总线具有两对信号线和一对电源线,可采用任意方式连接63个装置。当两M建0.D,e1,亲边5.其他总线15直,2M08率,(3安捷伦科技和ⅴ XI Technology公司于2004年推出了LXI( LAN eXtensions forInstrumentation)总线。2004年11月,LX联盟 LXI Consortium成立,旨在开发、支持和促进LXI标准。2005年9月,LX联盟正式公布了LXI1.0标准。2006年第一季度首批通过LXT认证的产品即被推出。,课为图要箭相溶LXI基于IEEE8023以太网技术,是以太网在仪器领域的扩展。LXI总线速度现在最快达到千兆位每秒,还将发展为万兆位每秒。LXI理论上支持的设备数目不受限制,并且通过使用路由器、交换机和中继器,对线缆长度几乎没有限制,还可以使用无线局域网技术LXI不受地理限制,可以实现远程测量应用。LXI被认为在未来将取代GPB,但相比GPIB,LXI还存在一定的延迟问题。T公1A,的器1除了上述几种总线技术外,虚拟仪器还广泛采用其他的总线,如RS232C、标准并行接口( Standard parallel port,SPP)、增强型并行接口( Enhanced parallel port,EPP)以及以太网Etherne等。用户可根据自己的实际情况选用适当的产品。修下12虚拟仪器技术前景展望虚拟仪器技术经过二十多年的发展,正沿着总线与驱动程序标准化、软硬件模块化,以及编程平台图形化和硬件模块即插即用(Plug&Pay)化等方向发展。其发展前景主要体现在以下几方面:部(1)开放式数据采集标准将使虚拟仪器走上标准化、通用化、系列化和模块化的道路。(2)数据采集产品性能的不断提高,为测试技术水平的提高提供了可靠的保证。3)随着Web技术的迅猛发展,以及它与虚拟仪器技术的结合,会形成基于web技术第1章虚拟仪器技术7的虚拟仪器。新一代的虚拟仪器将能够快速、方便地与蓝牙、无线以太网和其他标准的网络技术相融。“网络即仪器”也将成为新的概念,而网络化仪器必将推动仪器界新的革命。基十本章小结9本章简要介绍了虚拟仪器的基本概念、构成、特点以及虚拟仪器接口总线技术。通过本章的学习,希望读者能够对虚拟仪器及接口总线技术有一个总体的了解,以便于以后进一步的学习。9圈登图小型“点,天个行计的练习与思考一1浪求,米得的到中已样11.什么是虚拟仪器?简述虚拟仪器的组成及特点。出烟显读十贵的2.虚拟仪器主要采用哪些总线接口技术?它们各有什么优、缺点?装量,的出中量实同世个部量,的为实出果声面真对人1容内频,景的具个1)求来清置西公胃到的翻首应中亲长蛙道,( OAU.TOUPPIUDA里处没变面小的早中出人解的早滑由,长过文,团是个。当出求合一溶内内善外出非料,A,更应翅器计,中差,书一分中机:卧申名方,量中面平,界近否,图宾动结上米限个示显的律,两长过销题自中个发西眼实世量(离,试科平中强(2等来中C图头中紫计要最,平无,之上其,平的,的一,长为,只的更,过1要果,类,深菱人,中题,限回单首算出,型米

9
下载
364
浏览
2021-05-06发布

5. jishiqi

  动态倒计时牌,目标时间(即倒计时截至时间)的年、月、日、时、分、秒以及倒计时主题可以根据不同主题由用户动态设定,并且在此设定基础上在屏幕上显示距离相关主题到达之时还有n年、n天和n秒(其中的三个n各不相同,且随着程序运行动态变化),以北京时间作为主要显示板块,同时显示纽约、伦敦时间的附加倒计时板块。程序中除了刚运行时给出一次当前标准时间值(或读出系统当前时间)外,在程序运行期间应在自己独立的用户时钟控制下,而不受外界输入影响和系统时间的束缚。(Dynamic countdown, the target time (ie, as the countdown time) of the year, month, day, hour, minute, second, and the countdown theme can set different themes by the users, and in this setting is displayed on the screen on the basis of distance-related There are n the theme of the time of arrival, n day n seconds (one of the three different n, and with the dynamic program runs), to Beijing as the main display section, also shows New York, London time, the additional countdown Plate. In addition to just run the program once the current standard time value is given (or read the current system time), but during the program should be independent in their own under the control of the user clock, and free from outside influence and input system time constraints. )

2
下载
230
浏览
2011-05-07发布

6. Tkinter实例

这系列教程完全以代码的形式来写的,目标是:读者看代码和注释就可以理解代码的意思。虽然作者力求在每个例子中做到功能尽量少,代码尽量的简洁,但为了演示某个功能,不得不添加了一些额外的内容,如有疑问,请参考:《An Introduction To Tkinter》:这是介绍 Tkinter 我见过最全的一本书了http://docs.python.org/lib/tkinter.html:python 模块中介绍关于 Tkinter 编程的入门级教程http://www.tcl.tk/:Tk 的官方网站,最权威 Tk 资料。就是这本书的章节先后顺序,建议从前至后进行阅读。问题与反馈:如果在练习中有疑问或问题欢迎与我联系,一起讨论学习作者联系方式:傅客电邮于北京年月日初步结果教程之篇第一个例子使用内置位图改变的前景色和肯景色设置宽度与高度使用图像与文本文本的多行显小教程之篇第个例子的外观效果显示文本与图像的焦教程之篇的宽度与高度设置文本在控件上的显示位置改变的前景色与背景色设置的边框设置的外观效果设置状态绑定与变量教程之篇第一个程序与变量绑定设置为只读设冒为密码输入框验证输入的內容教程之篇第例设置的事件处理函数改变的显小文本将变量与绑定设置的状态值教程之第例子为指定组创建两个不同的组使用相同的绑定事件处理函数改变外观效果教程之篇第一个可以选中多个使用支持鼠标移动选中位置使向支持和中添加个删除中的选中或取消中的得到当前中的个数返回指定索引的返回当前选中的的索引判断一个是否被选中与变量绑定与事件绑定教程之篇第一个例子指定创建的参数绑定变量使用事件处理函数打印当前的值控制显示位数设置的标签属性设置取得的值教程之篇第·个例了创建时指定参数。设置的值绑定变量设置的事件处理函数的当前内容册除字符(这是个有问题的程序)在指定位置插入文本教程之篇第一个例子设置的位置使用事件处理函数(不建议这样使用)绑定将的解除绑定解除与的关系教程之篇第例子添加下拉菜单向菜单中添加项向菜单中添加顶向菜单中添加分隔符快捷菜单菜单项的操作方法教程之的常用方法教程之第例了改变的宽度设置宽高比例绑定变量文本对齐属性教程之创建设置的显示值打印的值使用作为的选项教程值向中添加删除指定的在指定位置添加个教程之第向实例中添加添加了的支持教程之创建简单的设置的属性使用自凵制作提示框教程之篇第一个例子向中添加文本仗用索引添加内容使用内置的控制添加位置使用表达式来增强教程之使用来指定文本的属性同时使用两个文本指定同一个属性控制的级别对文本块添加使用自定义对文本块添加使用获得中的内容测试对的影响使用对文本属性的影响教程之篇自定义的两个内置属性在中创建按钮在中创建一个图像未实现绑定与事件使用实现编辑常用功能未实现教程之篇第例了创建一个指定的填充色指定的边框颜色指定边框的宽度画虚线使用画刷填充修改的坐标教程之创建的多个使用同一个通过来访问向其它添加返回其它改变在中的顺序教程之篇移动删除缩放绑定与添加绑定事件绑定新的与现有的教程之绘制弧形设置弧形的样式设置弧形的角度绘制位图绘制图像绘制直线直线的属性绘制椭圆创建多边形修饰图形绘制文本选中文本创建组件教程之篇第一个例子的关系向中添加多个组件固定设置到自由变化如何控制子组件的布局如何控制组件的布局改变组件的排放位置设置组件之间的间隙大小教程之篇使用绝对坐标将组件放到指定的位置使用相对坐标放置组件位置使用同时指定多个组件同时使用相对和绝对坐标使用来指定放置的容器深入用法事件与结合使用教程之篇第一个例子使用和来指定位置为其它组件预定位置将组件放置到预定位置上去将两个或多个组件同一个位置改变列(行)的属性值组件使用多列(多行)设置表格中组件的对齐属性教程之篇第一个字体例子仗用系统已有的字体宇体创建属性优先级得到字体的属性值使用系统指定的字体教程之使用用模态对话框使用模块打开文件对话框保存文件对话框使用颜色对话框使用消息对话框使用缺省焦点教程之测试鼠标点击事件测试鼠标的移动事件测试鼠标的释放事件进入事件教程之篇测试离开事件响应特殊键响应所有的按键事件只处理指定的按键消息使用组合键响应事件改变组件人小事件教程之篇两个事件同时绑定到一个控件为一个绑定一个事件。事件各个级别音传递使用的后果使用绑定教程之篇第一个例子:指定显小的文本初始化创建一个使用编码,到现在为止还没有使用过直接通过“就可以完成的显示,必须含有此语句但是不需要(严格地说是必须不这样使用),否则解释器抱怨进入消息循环控件的显示步骤创建这个控件指定这个空间的,即这个控件属于哪一个告诉有一个控什产生了还有更简单的一个例子:将打印到标题上,也不用创建了再没法儿简化了,就这样吧使用内置位图指定显示的位图初始化创建一个,使用编码,到现在为止还没有使用过百接通过“就可以完成的。上面的代码使用了内置位图

1
下载
247
浏览
2020-12-02发布