登录
首页 » matlab » Numerical_Algorithm_for_Fractional_DynamicSystems

Numerical_Algorithm_for_Fractional_DynamicSystems

于 2010-04-16 发布 文件大小:81KB
0 185
下载积分: 1 下载次数: 0

代码说明:

说明:  分数阶动态系统的数值算法Numerical Algorithm for Fractional Dynamic Systems(Numerical Algorithm for Fractional Dynamic Systems)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • kalman
    卡尔曼滤波器例子,跟踪目标,可以用去除噪声(Kalman filter example, target tracking Can be used to remove noise)
    2012-05-06 16:22:32下载
    积分:1
  • mm
    说明:  DC motor speed control, this file ise very good for students.
    2014-11-30 04:40:21下载
    积分:1
  • EMDprogram
    经验模式分解程序(简称EMD),在某些情况下比WAVELET TRANSFORM 和STFT分析效果要好,就是计算很费时间!(Empirical Mode Decomposition (EMD), In some cases than WAVELET TRANSFORM STFT analysis and better results. Computing is a great time!)
    2007-07-04 17:18:47下载
    积分:1
  • pv_modle
    适用性很强的matlab中pv的方针程序(Pv applicability strong policy program in matlab)
    2011-06-05 19:32:18下载
    积分:1
  • checkgeometry
    有限元单元划分 checkgeometry(Finite Element unit division checkgeometry)
    2014-09-17 09:22:24下载
    积分:1
  • nsga2--original--test
    对nsga2算法进行了修改,下载放到matlab运行即可用。(very good!)
    2020-07-06 19:28:58下载
    积分:1
  • K-Means
    K-means algorithm code matlab
    2013-04-06 04:59:34下载
    积分:1
  • Bayes
    贝叶斯最小错误率分类器 用两列数据属性求二维正态分布 求后验概率分类(Bayesian minimum error rate sorter two columns of data attributes seeking seeking a two-dimensional normal posterior probability classification)
    2013-11-26 09:36:54下载
    积分:1
  • 高阶累积量
    说明:  基于高阶累积量特征参数的的通信信号的调制模式自动识别matlab程序(Modulation Recognition of Communication Signals Based on Higher Order Cumulants)
    2019-06-25 08:53:31下载
    积分:1
  • test
    首先生成如下形式的图片:图中的白条为7象素宽,210象素高,白条间的宽度为17象素。 然后应用多种滤波器进行处理:算术均值,几何均值,谐波均值,逆谐波均值,中值滤波,中点滤波,最大值、最小值滤波等。最后详细比较上述的结果,并分析原因。(内含实验报告)(Pictures first generate the following form: in IOUs 7 pixels wide by 210 pixels high, IOUs between the width of 17 pixels. Then apply a variety of filters for processing: arithmetic mean, geometric mean, harmonic mean inverse harmonic mean, median filtering, the midpoint filtering, maximum, minimum filter. Finally, a detailed comparison of the above results, and analyze the reasons. (Contains experimental report))
    2020-11-09 23:49:46下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载