登录
首页 » matlab » G729

G729

于 2009-09-24 发布 文件大小:510KB
0 219
下载积分: 1 下载次数: 153

代码说明:

  The rar folder contains the G.729 matlab code for encode and decode

文件列表:

G.729 coder
...........\1second.wav
...........\2.wav
...........\ACELP_Code_A.m
...........\asum.c
...........\asum.mexw32
...........\autocorr_levinson.m
...........\Az_lsp.c
...........\Az_lsp.mexw32
...........\bin_dec.m
...........\ClosedLoopPitchSearch.m
...........\codesearch.m
...........\coding.bit
...........\computefi.m
...........\computefiloop.c
...........\computefiloop.mexw32
...........\compute_codeword.m
...........\computing_zn.m
...........\conjugate_structure.m
...........\conjugate_structurecore.c
...........\conjugate_structurecore.mexw32
...........\dec_bin.m
...........\enc_lag3.m
...........\fastloop.c
...........\fastloop.mexw32
...........\fixed_codebook_index.m
...........\G729code.m
...........\g_pitch.m
...........\impulse_response.m
...........\int_qlpc.m
...........\jisuanL1.m
...........\jisuanL2.m
...........\jisuanL3.m
...........\LpAnalysis.m
...........\Lsp_Az.m
...........\lsp_expand.m
...........\lsp_get_quant.m
...........\lsp_get_tdist.m
...........\Memory_update.m
...........\pitch_fr3_fast.m
...........\pitch_ol_fast.m
...........\Pitch_Open_Loop.m
...........\pred_lt_3.c
...........\pred_lt_3.mexw32
...........\Pre_Process.m
...........\QuanJuValue.m
...........\Qua_gain.m
...........\residu.m
...........\sousuoL1.m
...........\syn_filt.c
...........\syn_filt.mexw32
...........\update_c_h.m
G.729A decoder
..............\agc.m
..............\bin_dec.m
..............\coding.bit
..............\decoding_main.m
..............\Decod_ACELP.m
..............\dec_bin.m
..............\Dec_gain.m
..............\Dec_lag3_1.m
..............\Dec_lag3_2.m
..............\destream.m
..............\enframe.m
..............\G729decode.m
..............\int_qlpc.m
..............\jieshou1.m
..............\jieshou2.m
..............\lpcar2ls.m
..............\lpcls2ar.m
..............\lsp_expand.m
..............\lsp_get_quant.m
..............\main.m
..............\pit_pst_filt.m
..............\Post_Filter.m
..............\Post_Process.m
..............\pred_lt_3.mexw32
..............\QuanJuValuedecode.m
..............\residu.m
..............\syn_filt.mexw32
..............\syn_speech.wav
..............\update_c_h.m

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • fourteen
    基于matlab的十四个节点的潮流程序,主要用于电力系统(Matlab based on the trend of the fourteen nodes procedures, mainly for power system)
    2011-04-23 21:04:30下载
    积分:1
  • cuba
    CAR game using Visual studio 2010 C++ console application
    2010-06-05 11:43:37下载
    积分:1
  • stbc8
    多输入多输出系统中空时分组码matlab仿真源代码。(Multiple-input multiple-output system simulation of hollow-time block code matlab source code.)
    2009-11-09 19:08:51下载
    积分:1
  • roadirianalyze
    道路平整度计算程序,利用重力加速度测量值,进行功率谱密度计算,得到IRI模型的实测值(a program used for calculate the iri of road)
    2021-01-27 04:08:37下载
    积分:1
  • CISSP-Certified-Information-Systems-Security-Prof
    CISSP Certified Information Systems Security Professional Study Guide (Sybex, 3rd Ed)
    2014-01-18 22:26:10下载
    积分:1
  • audio
    用matlab程序实现对音频信号幅度调制的仿真结果(Matlab program used for audio signal amplitude modulation simulation results)
    2007-10-10 10:43:29下载
    积分:1
  • xinhaochuli
    xinhaochuli ,matlab做的,信号导入。滤波。有注释(xinhaochuli, matlab do, signal import. Filtering. Annotated)
    2010-11-23 09:59:55下载
    积分:1
  • myfft64
    simulation 64point FFT using matlab
    2013-03-17 22:52:27下载
    积分:1
  • mimo-ostbc-simulink
    基于matlab-simulink的mimo仿真模型,使用了ostbc编码技术,可以看到ber与锐利衰落的关系,成功运行。(Mimo simulation model based on Matlab-Simulink of ostbc coding techniques, you can see ber, and the sharp decline of the relationship, and run successfully.)
    2013-04-24 11:39:39下载
    积分:1
  • 1807.01622
    深度神经网络在函数近似中表现优越,然而需要从头开始训练。另一方面,贝叶斯方法,像高斯过程(GPs),可以利用利用先验知识在测试阶段进行快速推理。然而,高斯过程的计算量很大,也很难设计出合适的先验。本篇论文中我们提出了一种神经模型,条件神经过程(CNPs),可以结合这两者的优点。CNPs受灵活的随机过程的启发,比如GPs,但是结构是神经网络,并且通过梯度下降训练。CNPs通过很少的数据训练后就可以进行准确的预测,然后扩展到复杂函数和大数据集。我们证明了这个方法在一些典型的机器学习任务上面的的表现和功能,比如回归,分类和图像补全(Deep neural networks perform well in function approximation, but they need to be trained from scratch. On the other hand, Bayesian methods, such as Gauss Process (GPs), can make use of prior knowledge to conduct rapid reasoning in the testing stage. However, the calculation of Gauss process is very heavy, and it is difficult to design a suitable priori. In this paper, we propose a neural model, conditional neural processes (CNPs), which can combine the advantages of both. CNPs are inspired by flexible stochastic processes, such as GPs, but are structured as neural networks and trained by gradient descent. CNPs can predict accurately with very little data training, and then extend to complex functions and large data sets. We demonstrate the performance and functions of this method on some typical machine learning tasks, such as regression, classification and image completion.)
    2020-06-23 22:20:02下载
    积分:1
  • 696518资源总数
  • 105885会员总数
  • 31今日下载