-
Rapid_and_Robust_Transfer_Alignment
本文详细介绍了快速传递对准滤波器的设计,并进行了模拟仿真验证,给出了结果分0析,验证了方法的有效性。(This paper describes a rapid transfer alignment filter design, and carried out a simulation to verify, given the results of sub-0 Analysis, verification of the effectiveness of the method.)
- 2008-04-02 18:54:40下载
- 积分:1
-
gentleBoost
当前流行的机器学习算法之一:boosting的变体——Gentleboost(The current popular one of machine learning algorithms: boosting variants- Gentleboost)
- 2021-04-14 14:58:55下载
- 积分:1
-
watershed
用matlab的分水岭分割法实现图像分割,基于形态学,提取边缘(Using Matlab watershed segmentation method to achieve image segmentation)
- 2020-07-10 13:58:55下载
- 积分:1
-
HW3
熟悉图像的频域滤波算法、灰度图经FFT 后变到频域、噪声及移除(Familiar image of the frequency domain filtering algorithm, after the change to grayscale by the FFT frequency domain, noise and removed)
- 2020-12-20 10:09:09下载
- 积分:1
-
JPEGCompression
说明: 编码:
(1)进行颜色转换,将RGB格式转换为YUV格式。
(2)将待编码的N×N的图像分解成(N/8)^ 2 个大小为8×8的子图像。
(3)对每个子图像进行DCT变换,得到各子图像的变换系数。这一步的实质是把空间域表示的图像转换成频率域表示的图像。
(4)对变换系数进行量化。
(5)进行Z字形重排
(6)使用霍夫曼变长变码编码器对量化的系数进行编码,得到压缩后的图像(数据)。
解码:
(1) 对压缩的图像数据进行解码,得到用量化系数表示的图像数据。
(2) 进行反Z字型重排
(3)用与编码时相同的量化函数或量化值表对用量化系数表示的图像数据进行逆量化,得到每个子图像的变换系数。
(4)对逆量化得到的每个子图像的变换系数进行反向正交变换(如反向DCT变换等),得到(N/8)^2 个大小为8×8的子图像。
(5)将(N/8)^2 个大小为8×8的子图像重构成一个N×N的图像。
(6)进行颜色组合,将YUV格式转换为RGB格式图像。(JPEG compression and decompression process)
- 2019-02-18 22:58:13下载
- 积分:1
-
CircularHough_Grd
matlab检测圆心程序,基于HOUGH,附测试图像。(Detect matlab center procedures, based on HOUGH, attached to the test image.)
- 2009-03-31 22:16:33下载
- 积分:1
-
NPCR_and_UACI.m
计算图像处理中的评价指标NPCR和UACI(Calculate the evaluation indexes NPCR and UACI)
- 2021-01-08 17:28:51下载
- 积分:1
-
unwrap2
相位接包裹程序,可以对相位进行展开,简单,展开速度快(Phase then wrapped procedures can start phase, simple, fast start)
- 2008-12-17 12:45:27下载
- 积分:1
-
Ratematching_byylluo
LTE中速率匹配的代码,包括子块交织,比特搜集,比特选择和修剪(The code rate matching in LTE, including the sub-block interleaving and bit gather, bit selection and pruning)
- 2011-01-23 21:35:25下载
- 积分:1
-
SiftGPU-V370
说明: 使用gpu、cpu并行进行sift算子计算匹配,能够在原来的基础上加速处理,但对显卡要求较高,具体环境配置使用方法可以参照mannual(SiftGPU is an implementation of SIFT [1] for GPU. SiftGPU processes pixels parallely to build Gaussian pyramids and detect DoG Keypoints. Based on GPU list generation[3], SiftGPU then uses a GPU/CPU mixed method to efficiently build compact keypoint lists. Finally keypoints are processed parallely to get their orientations and descriptors.
SiftGPU is inspired by Andrea Vedaldi s sift++[2] and Sudipta N Sinha et al s GPU-SIFT[4] . Many parameters of sift++ ( for example, number of octaves, number of DOG levels, edge threshold, etc) are also available in SiftGPU. The shader programs are dynamically generated according to the parameters that user specified.
SiftGPU also includes a GPU exhaustive/guided sift matcher SiftMatchGPU. It basically multiplies the descriptor matrix on GPU and find closest feature matches on GPU. Both GLSL and CUDA implementations are provided.
)
- 2011-02-23 10:20:27下载
- 积分:1