登录
首页 » matlab » RC-design

RC-design

于 2011-04-06 发布 文件大小:21KB
0 246
下载积分: 1 下载次数: 0

代码说明:

说明:  rc滤波器的设计,很详细的过程,从原理到代码都有(rc filter design, a very detailed process, from theory to code all)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • mathmodel
    数学建模,优化计算,以及模型实例, funtool - 函数计算器 tutdemo - MATLAB优化教程 mathmodl - 工具箱演示 (Modeling)
    2009-11-12 09:54:24下载
    积分:1
  • ANUPAM
    this code of matlab..and this is done by me...in guru ghasif
    2013-10-01 17:50:48下载
    积分:1
  • Desktop
    说明:  随机切换系统稳定性和利用matlab线性矩阵不等式工具箱求可行解(Stability of stochastic switched systems using MATLAB LMI toolbox to find feasible solutions)
    2020-11-02 17:34:55下载
    积分:1
  • yasuo
    一种新的基于matlab环境的用SVD原理实现图像压缩的源程序,程序简单易懂(Implementation of new image compression using SVD, the program easy to understand)
    2009-04-04 20:14:38下载
    积分:1
  • Reordering
    说明:  高压缩比信号的重构问题,压缩感知理论相关(Reordering for Better Compressibility Efficient)
    2011-04-06 09:22:43下载
    积分:1
  • jiaotongl
    历史交通流预测,采用matlab编程,预测效果很好(Historical traffic flow forecasting, using matlab programming, forecasting good results)
    2013-09-16 16:45:17下载
    积分:1
  • 最小二乘支持向量机lssvm
    用于lssvm(最小二乘支持向量机)的单序列拟合预测一个周期(12期)(Used in the LSSVM (least squares support vector machine) fitting to predict a single sequence cycle (12))
    2016-12-17 16:30:55下载
    积分:1
  • phase-Features-m-files
    to gain access i have to type at least 20 words. better be useful. am i there yet.
    2013-02-11 21:53:52下载
    积分:1
  • The-LSI-text-classification-model
    LSI就是这样一种维数约减方法。它可以通过对“文档向量矩阵”进行解奇异值分解(SVD: Singular Value Decomposition)运算,自动计算得到一个比原始空间小得多的有效语义空间(LSI is such a dimensionality reduction method. It can be through the "document vector matrix" for the singular value decomposition (SVD: Singular Value Decomposition) operation, automatically calculated an effective semantic space is much smaller than the original space)
    2014-01-10 22:58:11下载
    积分:1
  • HMM-based-valuation-model
    给定观测序列 O=O1O2O3…Ot和模型参数λ=(A,B,π),怎样有效计算某一观测序列的概率,进而可对该HMM做出相关评估。例如,已有一些模型参数各异的HMM,给定观测序列O=O1O2O3…Ot,我们想知道哪个HMM模型最可能生成该观测序列。通常我们利用forward算法分别计算每个HMM产生给定观测序列O的概率,然后从中选出最优的HMM模型。(Given the observation sequence O = O1O2O3 ... Ot and model parameters λ = (A, B, π), how to effectively calculate the probability that a single observation sequence, and thus can make the relevant assessment of the HMM. For example, there are a number of different model parameters HMM, given the observation sequence O = O1O2O3 ... Ot, we want to know which model is most likely to generate the HMM observation sequence. Usually we use forward algorithm calculates the probability of a given observation sequence O generated for each HMM, HMM and then to choose the best model.)
    2015-05-22 04:03:23下载
    积分:1
  • 696518资源总数
  • 106182会员总数
  • 24今日下载