-
simulation
In the previous chapters we have encountered a number of ways to process digital
on
- 2014-11-14 08:57:10下载
- 积分:1
-
05640848
关于雷电系统设计的资料,对设计雷电定位系统有参考价值(About lightning system design information on the design of lightning location system have reference value)
- 2013-10-27 20:59:07下载
- 积分:1
-
newton
Metodo de Newton para resoluç ã o do sistema de 3 barras
- 2013-05-02 04:07:21下载
- 积分:1
-
Web
已有的文本过滤受限,所以对现有的文本过滤软件进行了算法改进,对现有的问题进行分析,故而有着实用价值,但是文本过滤仍然有着不能弥补对图形图象的无效,所以有必要对图象视频等进行过滤(Already limited text filtering, so the existing text filtering software algorithms to improve on the existing analysis of the problem the club would have practical value, but still have a text filter should not make up for the graphic image is invalid, there is necessary to filter the video image)
- 2007-11-09 05:23:55下载
- 积分:1
-
qpsk
四进制相移键控,樊昌信《通信原理》内容。。。。。。。(Quaternary phase shift keying, Fan Changxin " Communication Theory" content)
- 2009-03-19 22:57:09下载
- 积分:1
-
6949172245Kalman_MATLAB
很好用的matlab程序 用于kalman滤波器的实现 老板给的任务(A good use for the kalman filter matlab program to the task of the realization of the boss)
- 2009-11-08 11:28:49下载
- 积分:1
-
arnoldim_mine
计算大型矩阵重启动的arnoldi的matlab 程序。(large matrix calculations restart of the Matlab arnoldi procedures.)
- 2007-01-01 16:31:57下载
- 积分:1
-
fractal-use
分形的练习一
①Koch曲线
用复数的方法来迭代Koch曲线
clear i 防止i被重新赋值
A=[0 1] 初始A是连接(0,0)与(1,0)的线段
t=exp(i*pi/3)
n=2 n是迭代次数
for j=0:n
A=A/3 a=ones(1,2*4^j)
A=[A (t*A+a/3) (A/t+(1/2+sqrt(3)/6*i)*a) A+2/3*a]
end
plot(real(A),imag(A))
axis([0 1 -0.1 0.8])
②Sierpinski三角形
A=[0 1 0.5 0 0 1] 初始化A
n=3 迭代次数
for i=1:n
A=A/2 b=zeros(1,3^i) c=ones(1,3^i)/2
A=[A A+[c b] A+[c/2 c]]
end
for i=1:3^n
patch(A(1,3*i-2:3*i),A(2,3*i-2:3*i), b ) patch填充函数
end
(Fractal
Exercise One
The ① Koch curve
Plural iteration Koch curve
clear i to prevent i is reassigned
A = [0 1] initial A is a connection (0,0) and (1,0) of the segments
t = exp (i* pi/3)
n = 2 n is the number of iterations
for j = 0: n
A = A/3 a = ones (1,2* 4 ^ j)
A = [A (t* A+ a/3) (A/t+ (1/2+ sqrt (3)/6* i)* a) A+2/3* a]
end
plot (real (A), imag (A))
axis ([0 1-0.1 0.8])
② Sierpinski triangle
A = [0 1 0.5 0 0 1] initialized A
n = 3 the number of iterations.
for i = 1: n
A = A/2 b = zeros (1,3 ^ i) c = ones (1,3 ^ i)/2
A = [A A+ [c b] A+ [c/2 c]]
end
for i = 1:3 ^ n
patch (A (1,3* i-2: 3* i), A (2,3* i-2: 3* i), b ) patch filled function
end)
- 2013-03-02 10:03:09下载
- 积分:1
-
SDPAD-release
The time-independent behaviour of this approach is necessary to assure the
correct tracking
- 2020-08-23 15:08:17下载
- 积分:1
-
xitongbianshi
一些介绍系统参数辨识方法的论文,包括迭代梯度算法,最小二乘算法等。很好的资料。(Some paper describes the system parameter identification methods, including iterative gradient algorithm, least squares algorithm. Good information.)
- 2015-12-03 22:47:39下载
- 积分:1