登录
首页 » matlab » Distributed-Space-Time-Block-Coded

Distributed-Space-Time-Block-Coded

于 2011-04-25 发布 文件大小:150KB
0 208
下载积分: 1 下载次数: 70

代码说明:

  对协作通信中分布式空时码的编码研究以及译码和性能仿真(Cooperative communication on distributed space-time codes coding and decoding and performance simulation)

文件列表:

Distributed Space-Time Block Coded.pdf,189848,2007-09-18

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • mdl
    基于simulink仿真的太阳能最大功率跟踪(MPPT)算法(The MPPT used in simulink)
    2010-10-23 10:28:15下载
    积分:1
  • LTE_downlink_yanggang
    LTE下行链路的仿真代码 基本模块都有 对系统仿真很有帮助(LTE downlink simulation code module has a helpful system simulation)
    2012-10-17 14:56:47下载
    积分:1
  • adsp_lab2_LMS
    MATLAB simulinkLMS算法仿真(Matlab simulink LMS algorithm)
    2011-09-22 09:56:32下载
    积分:1
  • face-detect
    利用labview与matlab结合实现人脸定位算法 置入mathscript(Labview matlab combined with the use of a face localization algorithm implementation into mathscript)
    2013-11-04 16:14:55下载
    积分:1
  • addtargets
    在实测的数据的特定波速,特定批次中加入高,中,低速三种目标(Measured data in a specific velocity, the specific batch addition of high, medium and low three goals)
    2011-12-08 15:52:56下载
    积分:1
  • chashi-bif-2
    这是另一个研究叉式分岔的程序,图形不一样,可供大家做分岔图时参考。(This is another study fork bifurcation procedure, graphics are not the same, for everyone to do bifurcation diagram reference.)
    2007-09-15 11:51:33下载
    积分:1
  • pso-6Pgenerator
    particle swarm optimization for solving economic dispatch problem
    2012-12-30 16:18:15下载
    积分:1
  • MATLAB-sample
    此文件包含大量matlab例程,尤其适合初学者,当学习资料在适合不过(This file contains a lot of matlab routines, especially for beginners, but when learning materials in a suitable)
    2013-08-11 13:57:34下载
    积分:1
  • Diff_Central_Oh4
    Differential of Functions like Sin , Cos , Tan , Cot and other Functions with Central Oh4 method and calculation of errors Differential with matlab program. Saman Darvish
    2013-02-01 02:34:55下载
    积分:1
  • WindyGridWorldQLearning
    Q-learning (Watkins, 1989) is a simple way for agents to learn how to act optimally in controlled Markovian domains. It amounts to an incremental method for dynamic programming which imposes limited computational demands. It works by successively improving its evaluations of the quality of particular actions at particular states. This paper presents and proves in detail a convergence theorem for Q,-learning based on that outlined in Watkins (1989). We show that Q-learning converges to the optimum action-values with probability 1 so long as all actions are repeatedly sampled in all states and the action-values are represented discretely. We also sketch extensions to the cases of non-discounted, but absorbing, Markov environments, and where many Q values can be changed each iteration, rather than just one.
    2013-04-19 14:23:35下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载