-
59836202Reinforcement-learning
强化学习源码,挺不错的,分享一下强化学习源码,挺不错的,(Reinforcement learning source, very good, reinforcement learning to share source code, very good,)
- 2020-10-29 17:49:57下载
- 积分:1
-
matlab_imagematching
基于灰度的归一化匹配算法;
基于灰度的快速模板匹配算法。
(Based on the normalized intensity matching Based on Gray' s fast template matching algorithm.)
- 2021-03-28 20:09:11下载
- 积分:1
-
COMSOL_LibDoc_RF
comsol rf 模块的使用说明,包括各种模型及详细例子说明(comsol rf module instructions, including detailed examples of various models and)
- 2011-09-22 23:31:53下载
- 积分:1
-
matlabexercise
matlab 实用程序一百例应用以及介绍(matlab utility applications, and introduces one hundred cases)
- 2011-01-03 13:15:05下载
- 积分:1
-
gui1yuandaima
matlab gui罗光华视频教材第一章源代码16个源代码,与例题相关(matlab gui)
- 2012-03-22 11:19:08下载
- 积分:1
-
xinsanwei01_xiyinzi
混沌系统的吸引子,很简单,初步学习可以看看(Attractor of the chaotic system is very simple, the initial learning can take a look at)
- 2013-01-08 21:26:41下载
- 积分:1
-
PSO
基于粒子群的神经网络优化算法的应用,在土壤水分特征曲线中的应用。(Neural network based on particle swarm optimization algorithm applied in the soil moisture characteristic curve application.)
- 2013-10-18 13:44:10下载
- 积分:1
-
PSO_DynamicEnvironment
PSO_DynamicEnvironment是用粒子群算法(particle swarm algorithm)解决动态环境寻优(最优值不断变化)的问题。文件打开后运行PSO_DynamicEnvironment.m文件即可得到结果,代码中有详细注释,方便修改。运行示例已经保存为图片附在压缩包中。(PSO_DynamicEnvironment solve dynamic environment particle swarm optimization algorithm (particle swarm algorithm) (optimal value changing) problems. Run PSO_DynamicEnvironment.m file to get the file to open the result, the code has detailed notes, easy to modify. Run the sample has been saved as a picture attached to the compressed package.)
- 2014-02-08 12:50:33下载
- 积分:1
-
通过Q学习算法解决房间路径规划问题
强化学习算法,通过Q学习算法解决房间路径规划问题,matlab(Reinforcement learning algorithm and Q learning algorithm to solve the problem of room path planning, matlab)
- 2020-06-21 17:40:01下载
- 积分:1
-
CSTR
对CSTR模型的建模及仿真程序,利用四阶龙科库塔法实现模型建立(Modeling and simulation program CSTR model, implementation model to establish the use of fourth-order Runge Ke Kuta law)
- 2020-12-22 15:09:07下载
- 积分:1