登录
首页 » matlab » array_process

array_process

于 2010-05-06 发布 文件大小:8KB
0 213
下载积分: 1 下载次数: 76

代码说明:

  自己写的阵列信号增强算法, 阵列信号时延算法(Write your own array of signal enhancement algorithms, array signal delay method)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • LE
    说明:  拉普拉斯特征映射算法,运用MATLAB编写完成。(Laplace feature mapping algorithm, using MATLAB prepared.)
    2015-05-07 16:51:12下载
    积分:1
  • voice-yuputu
    在matlab环境下实现,语谱图时间频率强度的图形描述。语谱图的实现(time frequent stronger)
    2011-07-04 12:11:56下载
    积分:1
  • UGM
    一个关于无向图推理模型的代码,可用于图像处理(An undirected graph inference on the model code)
    2011-10-28 22:03:30下载
    积分:1
  • Fig6x1
    直流驱动电机的matlab仿真文件,可以直接仿真结果(DC drive motor matlab simulation files, simulation results can be directly)
    2014-01-20 17:14:02下载
    积分:1
  • cc1_matlab
    信道编码的Matlab编程方法论文,英文版本(Channel coding of Matlab programming papers, the English version)
    2010-02-12 11:50:57下载
    积分:1
  • med01-165
    median filter details
    2011-01-30 18:29:06下载
    积分:1
  • AttenuationOfwaveOnMatlab
    安照标准格式给出数据信息excel文档,可以处理数据并形成可视化模型,包含原始excel文档与m文件(Security is given according to standard format data excel document, can handle data and develop visual models, including the original excel file documents and m)
    2010-05-25 13:49:39下载
    积分:1
  • LMS
    LMS算法实现自适应滤波 clear close all clc N=10000 设置仿真长度 信号产生参数设定 a1=-0.195 a1=-1.5955 a2=0.95 R0=[1,a1,a2 a1,1+a2,0 a2,a1,1] p=[1,0,0] r=inv(R0)*p 计算理论自相关函数 R=[r(1),r(2) r(2),r(1)] 生成理论自相关矩阵 p1=[r(2),r(3)] 生成互相关 h=inv(R)*p1 计算维纳解 Jmin=r(1)-h *p1 计算维纳解时最小均方误差 u=1/sum(eigs(R)) ( LMS算法实现自适应滤波 clear close all clc N=10000 设置仿真长度 信号产生参数设定 a1=-0.195 a1=-1.5955 a2=0.95 R0=[1,a1,a2 a1,1+a2,0 a2,a1,1] p=[1,0,0] r=inv(R0)*p 计算理论自相关函数 R=[r(1),r(2) r(2),r(1)] 生成理论自相关矩阵 p1=[r(2),r(3)] 生成互相关 h=inv(R)*p1 计算维纳解 Jmin=r(1)-h*p1 计算维纳解时最小均方误差 u=1/sum(eigs(R)) )
    2021-03-01 22:29:34下载
    积分:1
  • turbo_en_and_decode
    matlab仿真程序,有关信道编码中turbo码的编译码程序(matlab simulation program, the channel coding and decoding process in the turbo code)
    2010-12-03 22:39:29下载
    积分:1
  • Multilabel-Image-Classification-via-High
    Four crucial issues are considered by the proposed HoAL: 1) unlike binary cases, the selection granularity for multilabel active learning need to be fined from example to examplelabel pair 2) different labels are seldom independent, and label correlations provide critical information for efficient learning 3) in addition to pair-wise label correlations, high-order label correlations are also informative for multilabel active learning and 4) since the number of label combinations increases exponentially with respect to the number of labels, an efficient mining method is required to discover informative label correlations
    2014-09-03 02:03:47下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载