-
soundFFT
an algorithm to calculate fast fourier transform of sound signal
- 2011-09-01 02:37:50下载
- 积分:1
-
fostrogradski
Implementation of Integration method Ostrogradski.
Function matlab.
- 2011-10-13 08:43:59下载
- 积分:1
-
tennistrack
this code is used to track a ball in tennis game..
- 2011-08-19 13:09:51下载
- 积分:1
-
avantesToMatlab_2012_11_29
A set of functions to automatically process files saved by Avantes AvaSoft 7 software. See demo for example of use and descriptions within each m-file. The main function to use is avantesSpectrumRead, it will read all binary and ASCII files saved by Avantes within a directory. The binary file reader is the avantesBinaryRead function. A couple of additional useful functions (getScansByTime and getValueAtWavelength) are provided.
- 2013-01-22 15:11:04下载
- 积分:1
-
Onduleur_tri_3niveaux
Abstract—This paper investigates the performance of a 4-switch
- 2012-01-05 09:09:39下载
- 积分:1
-
APF_zhihuan
说明: 有源功率因数校正仿真模型,采用滞环电流控制的方法。(The simulation model of active power factor correction adopts the method of hysteresis current control.)
- 2020-05-30 20:48:56下载
- 积分:1
-
GM(1_1)
GM(1,1)模型1-4
1:GM(1,1)模拟模型,在matlab中的输入方法为gm1(x),x指要模拟的序列。
2:GM(1,1)预测模型,在matlab中的输入方法为gm2(x,K),x指要模拟的序列,K指从以后序列第一个数据算起的第k个待预测数据。
3:GM(1,1)群模拟模型,在matlab中的输入方法为gm3(x),x指要模拟的序列。
4:GM(1,1)群预测模型,在matlab中的输入方法为gm4(x,K),x指要模拟的序列,K指从以后序列第一个数据算起的第k个待预测数据。
gm4对序列趋势比较好的数据预测效果较好,对上下变动的数据,特别是后4个数据趋势跟前面的数据相反的,预测效果很差。
gm2对上下变动的数据,预测效果比gm4好,但对趋势较好的数据,预测精度没有gm4高。
gm3比gm1模拟精度要高。
可以以x=[1 3 5 7 9 11 13 15]进行实验。x输入默认行向量。
所有程序在matlab6.0上调试通过。(GM (1,1) 1-4 1 : GM (1,1) simulation model Matlab in the input method for gm1 (x), x entail simulation sequence. 2 : GM (1,1) model, in the Matlab input method for gm2 (x, K), x entail simulated sequence, from the K refers to the first series after a run of data k pending forecast data. 3 : GM (1,1)- simulation model, in the Matlab input method for gm3 (x), x entail simulation sequence. 4 : GM (1,1)- forecasting model, in the Matlab input method for gm4 (x, K), x entail simulated sequence, from the K refers to the first series after a run of data k pending forecast data. Gm4 right sequence relatively good trend data predicted better results, the next change in the data, especially after four data with the previous trend data contrary, predict poor. Gm2 next to the change in forecast resu)
- 2007-05-31 11:13:42下载
- 积分:1
-
Programm-Matlab
Matlab programm:ARMA parameter program,solair pannel
- 2013-12-12 20:40:48下载
- 积分:1
-
adaboost
AdaBoost元算法属于boosting系统融合方法中最流行的一种,说白了就是一种串行训练并且最后加权累加的系统融合方法。
具体的流程是:每一个训练样例都赋予相同的权重,并且权重满足归一化,经过第一个分类器分类之后,
计算第一个分类器的权重alpha值,并且更新每一个训练样例的权重,然后再进行第二个分类器的训练,相同的方法.......
直到错误率为0或者达到指定的训练轮数,其中最后预测的标签计算是各系统*alpha的加权和,然后sign(预测值)。
可以看出,训练流程是串行的,并且训练样例的权重是一直在变化的,分错的样本的权重不断加大,正确的样本的权重不断减小。
AdaBoost元算法是boosting中流行的一种,还有其他的系统融合的方法,比如bagging方法以及随机森林。
对于非均衡样本的处理,一般可以通过欠抽样(undersampling)或者过抽样(oversampling),欠抽样是削减样本的数目,
过抽样是重复的选取某些样本,最好的方法是两种进行结合的方法。
同时可以通过删除离决策边界比较远的样例。
(AdaBoost boosting systems dollar fusion algorithm is the most popular one, it plainly systems integration approach is a serial train and final weighted cumulative.
Specific process is: Each training example is given equal weight, and the weights satisfy normalization, after the first classifiers after
Calculating a first classifier weights alpha value for each sample and updates right weight training, and then the second classifier training, the same way .......
0, or until the specified error rate training rounds, wherein the label is the calculation of the final prediction system* alpha weighted and then sign (predicted value).
As can be seen, the training process is serial, and weight training examples is always changing, the right of the wrong sample weight continued to increase, the right to correct sample weight decreasing.
AdaBoost algorithm is an element, as well as other methods of boosting popular systems integration, such as bagging and random forest method.
For )
- 2014-07-09 19:24:29下载
- 积分:1
-
RRM-000012
really understand,describe using matlab
- 2010-11-21 10:23:52下载
- 积分:1