登录
首页 » matlab » FrFT_LFM

FrFT_LFM

于 2013-07-19 发布 文件大小:1KB
0 256
下载积分: 1 下载次数: 191

代码说明:

  线性调频信号的分数阶傅里叶变换,完整可用。分数阶傅里叶变换采用Pei采样算法,在傅里叶域呈现宽带特性的线性调频信号,在分数阶域呈现窄带特征。(The fractional Fourier transform of linear frequency modulation signal, available. fractional Fourier transform using Pei s sampling algorithm, in Fourier domain present broadband characteristics of linear frequency modulation signal, the fractional domain present narrowband feature. )

文件列表:

dfrft.m,652,2013-05-07
main.m,853,2013-07-18

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • specificationmatlab
    说明:  自己编写的一个简单的matlab程序,实现图像直方图的均衡化及规定化处理.image histogram equalization,histogram matching(specification).(I have written a simple matlab program to achieve image histogram equalization and processing requirements. Image histogram equalization, histogram matching (specification).)
    2008-10-22 22:05:30下载
    积分:1
  • matlab-primer
    Matelab Primer,原版英文资料,不错,感兴趣的同学可以下载看看(Matelab Primer, the original information in English, well, interested students can download to see)
    2011-06-16 11:28:38下载
    积分:1
  • target-tracking-using-kalman
    matlab编写的用卡尔曼滤波实现目标跟踪(matlab prepared using Kalman filter tracking)
    2013-10-17 15:49:05下载
    积分:1
  • matlab源代码
    说明:  里面有很多matlab的源代码,可以用于一套的数据处理。包括样本划分,光谱的预处理等(There are a lot of matlab source code, can be used for a set of data processing.Including sample division, spectral pretreatment and so on)
    2019-05-23 20:24:31下载
    积分:1
  • irr_predict_bp
    说明:  光伏发电功率主要受太阳辐照度影响,所以准确预测太阳辐照度对光伏功率预测十分重要。程序采用小波分解先对辐照度数据进行分解,然后再用bp神经网络对分解的辐照度数据分别预测,再组合作为最后的预测结果。(Photovoltaic power generation is mainly affected by solar irradiance, so accurate prediction of solar irradiance is very important for photovoltaic power prediction. The program uses wavelet decomposition to decompose the irradiance data, then uses BP neural network to predict the decomposed irradiance data separately, and then combines them as the final prediction result.)
    2020-08-02 20:08:34下载
    积分:1
  • bilateral3
    说明:  这是一个快速的三维图像双边滤波的实现。这个过滤器平滑图像的同时保留边缘,但在其最直接的实现是非常计算的要求,特别是对大型3D图像。快速双边滤波是一种近似技术,极大地提高了计算速度。我的实现严格遵循Matlab版的快速二维滤波器,只是做了一些修改(This is an implementation of fast bilateral filtering for 3D images. This filter smoothes the image while preserving edges, but in its most straightforward implementation is very computationally demanding, especially with large 3D images. Fast bilateral filtering is an approximation technique which drastically improves the speed of computation. My implementation closely follows the Matlab version of the fast 2D filter with some modifications)
    2019-07-09 00:53:46下载
    积分:1
  • peakfind
    Find peaks in all waveforms. used in matlab. The peaks can be maximum and minimum.
    2007-11-02 14:37:20下载
    积分:1
  • strong_filter
    强跟踪滤波器对于强机动具有非常好的机动性能,针对战斗机越来越强的机动性能,已变得必不可少的滤波方法。这里总结了数篇关于强机动目标跟踪的文章,希望对大家的科研有帮助(Strong Tracking Filter for strong motor with very good maneuverability for getting stronger fighter maneuverability, has become an essential filtering method. Here is a summary of several articles on the strong maneuvering target tracking article, we want to help research)
    2014-01-15 18:10:17下载
    积分:1
  • matlab
    几个PID控制器的设计,对初学者相信又所帮助(PID controller design for a number of beginners think they are helping)
    2009-07-04 19:50:13下载
    积分:1
  • xiaobosuanfa
    采样频率 fs=10000 轴承外环故障信号 fid=fopen( bearingout.dat , r ) 故障 N=1024 xdata=fread(fid,N, int16 ) fclose(fid) xdata=(xdata-mean(xdata))/std(xdata,1) 时域波形 figure(1) plot(1:N,xdata) xlabel( 时间 t/n ) ylabel( 电压 V/v ) db10小波进行4层分解 一维小波分解 [c,l] = wavedec(xdata,4, db10 ) 重构第1~4层细节信号 d4 = wrcoef( d ,c,l, db10 ,4) d3 = wrcoef( d ,c,l, db10 ,3) d2 = wrcoef( d ,c,l, db10 ,2) d1 = wrcoef( d ,c,l, db10 ,1) ( Sampling frequency fs = 10000 bearing outer ring fault signal fid = fopen (' bearingout.dat' , ' r' ) failure N = 1024 xdata = fread (fid, N, ' int16' ) fclose (fid ) xdata = (xdata-mean (xdata))/std (xdata, 1) time-domain waveform figure (1) plot (1: N, xdata) xlabel (' Time t/n' ) ylabel ( ' voltage V/v' ) db10 wavelet decomposition 4 layer one-dimensional wavelet decomposition [c, l] = wavedec (xdata, 4, ' db10' ) 1 ~ 4 reconstructed detail signal d4 = wrcoef (' d' , c, l, ' db10' , 4) d3 = wrcoef (' d' , c, l, ' db10' , 3) d2 = wrcoef (' d' , c, l, ' db10' , 2) d1 = wrcoef (' d' , c, l, ' db10' , 1) )
    2011-05-21 16:48:36下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载