-
region
matlab的基于种子的区域生长处理,源码(matlab region grow seed growing matlab regiongrow region growing using matlab regiongrow by seed regiongr )
- 2013-04-25 15:53:27下载
- 积分:1
-
differentRI
基于matlab编程的,用于仿真光纤折射率传感特性(Simulating the Refractive Index Sensing Characteristics of Optical Fibers)
- 2018-12-14 10:47:24下载
- 积分:1
-
chordal
輸入兩個由TF, ZPK, SS 或 FRD建立的system function後,程式會自動計算在riemann plot上的Chordal distance值。(function delta=chordal(G1,G2)
This is the Chordal distance calculation tool on riemann plot.
)
- 2009-06-01 14:45:10下载
- 积分:1
-
WSNmodeldoc
Matlab Low cost nodes which could either have a fixed location or randomly
- 2012-09-21 18:13:27下载
- 积分:1
-
COMVC_MatlabMixedprogramming
基于COM的VC与MATLAB的混合编程技术(COM-based mixture of VC and MATLAB programming)
- 2010-07-18 11:39:09下载
- 积分:1
-
LDA
data from x per x matrices that i found, i do not know what is this about.
- 2010-12-30 12:30:47下载
- 积分:1
-
ModernCmmunicationSystemMATLAB
这是一本很好的现代通信书籍,由国外教材翻译过来,课本内附带有matlab程序配套讲解(This is a very good modern communication books, translated by foreign materials, textbooks included matlab program with supporting explanation)
- 2010-06-12 09:57:00下载
- 积分:1
-
project2
this source code is useful to do cdma simulation in awgn channel..
- 2011-02-01 13:32:09下载
- 积分:1
-
MATLAB-MLP-Backprop-Code
MATLAB MLP Backprop Code
- 2013-10-08 15:15:47下载
- 积分:1
-
D_star_PathPlanning-master
说明: 近年来,基于启发式的多目标优化技术得到了很大的发展,研究表明该技术比经典方法更实用和高效。有代表性的多目标优化算法主要有NSGA、NSGA-II、SPEA、SPEA2、PAES和PESA等。粒子群优化(PSO)算法是一种模拟社会行为的、基于群体智能的进化技术,以其独特的搜索机理、出色的收敛性能、方便的计算机实现,在工程优化领域得到了广泛的应用,多目标PSO(MOPSO)算法应用到了不同的优化领域[9~11],但存在计算复杂度高、通用性低、收敛性不好等缺点。
多目标粒子群(MOPSO)算法是由CarlosA. Coello Coello等在2004年提出来的(In recent years, heuristic-based multi-objective optimization technology has been greatly developed, and research shows that this technology is more practical and efficient than classical methods. Representative multi-objective optimization algorithms mainly include NSGA, NSGA-II, SPEA, SPEA2, PAES and PESA. Particle Swarm Optimization (PSO) algorithm is an evolutionary technology based on swarm intelligence that simulates social behavior. With its unique search mechanism, excellent convergence performance, and convenient computer implementation, it has been widely used in the field of engineering optimization. The objective PSO (MOPSO) algorithm is applied to different optimization fields [9~11], but it has shortcomings such as high computational complexity, low versatility, and poor convergence.
The multi-objective particle swarm optimization (MOPSO) algorithm was proposed by Carlos A. Coello Coello et al. in 2004)
- 2021-04-17 17:50:13下载
- 积分:1