登录
首页 » matlab » snr3000

snr3000

于 2013-07-30 发布 文件大小:1KB
0 181
下载积分: 1 下载次数: 2

代码说明:

  ofdm signal to noise ratio

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • MVDR_dingweifangfa
    说明:  基于MVDR的聚焦波束形成的辐射噪声源近场定位方法(Based on MVDR Beamforming focus near-field radiation noise source localization)
    2011-03-26 22:54:21下载
    积分:1
  • edege_detection
    说明:  基于小波变换模极大的多尺度图像边缘检测matlab源代码,该算法采用的是样条小波,为了更好的检测边缘,用多孔算法代替了mallat算法。该算法和mallat快速算法主要区别: 1 多孔算法不需要抽取偶数样本,所以奇异检测定位更准确,相应的重构是不需要插零。2 多孔算法需要对滤波器进行伸缩。(based on wavelet transform modulus maxima of multiscale edge detection Matlab source code, The algorithm used is kind of wavelet, in order to better detect the edge of porous algorithm instead of Mallat algorithm. The algorithm and fast algorithm Mallat major difference : an algorithm porous not even take samples So singular position detection more accurate, the corresponding Reconstruction interpolation is not zero. Two porous algorithm need to filter extendable.)
    2006-04-17 22:36:49下载
    积分:1
  • Saillance
    code to calculate an image saliency map
    2015-01-11 05:58:10下载
    积分:1
  • speech-recognize
    HMM MATLAB ..speech recognize
    2013-11-01 18:46:32下载
    积分:1
  • iir
    语音信号的iir滤波器设计,从带有噪音的信号中提取原始声音.目前,MP3播放器一般功率放大器的工作频率范围就是这个范围。但是大部分有用的和可理解的信息的频率在200到3500Hz之间。所以我们可以在这个范围间滤波,达到使声音可理解的要求。现将数字滤波器的设计指标设为通带截止频率fb=600HZ,阻带频率fc=1200HZ,通带波纹Ap=1dB,阻带波纹As=40dB,要求确定H(z)。(design of the iir filter, get the original voice without noise)
    2014-02-17 16:49:46下载
    积分:1
  • hurst
    分形分析的R/S重标极差方法求Hurst指数(Fractal analysis of R/S rescaled range method for the Hurst exponent)
    2013-06-10 14:12:23下载
    积分:1
  • cfmatrix
    matrice de confusion +matching+matlab
    2010-07-31 13:06:16下载
    积分:1
  • Lfgauss
    it is the power system in matlab programing
    2009-06-22 23:01:07下载
    积分:1
  • model_AF
    说明:  简单matlab的AF协作仿真,信道为瑞利信道(The AF cooperative communication simple matlab simulation, channel is Rayleigh Road)
    2010-04-23 20:51:16下载
    积分:1
  • ReBEL-0.2.7
    包括kf,ekf,pf,upf可以自己定制模型参数,完成滤波(ReBEL currently contains most of the following functional units which can be used for state-, parameter- and joint-estimation: Kalman filter Extended Kalman filter Sigma-Point Kalman filters (SPKF) Unscented Kalman filter (UKF) Central difference Kalman filter (CDKF) Square-root SPKFs Gaussian mixture SPKFs Iterated SPKF SPKF smoothers Particle filters Generic SIR particle filter Gaussian sum particle filter Sigma-point particle filter Gaussian mixture sigma-point particle filter Rao-Blackwellized particle filters The italicized algorithms above are not fully functional yet (or included in the current release), but will be in the next or future releases. The code is designed to be as general, modular and extensible as possible, while at the same time trying to be as computationally efficient as possible. It has been tested with Matlab 7.2 (R2006a). )
    2011-11-30 10:56:24下载
    积分:1
  • 696518资源总数
  • 106010会员总数
  • 4今日下载