-
xlswrite
用matlab轻松实现excel格式的数据输出(Easy to use matlab data output excel format)
- 2009-01-04 20:26:16下载
- 积分:1
-
test_cqi
展示了HSPA系统中PDSCH信道的基本测试以及CQI测试的基本参数和过程(HSPA system shows the basic test PDSCH channel and the CQI process of testing the basic parameters and)
- 2010-10-09 18:46:00下载
- 积分:1
-
spectrum_sub
spectrum_sub是谱减函数,使用谱减的方法达到降噪的目的,对于一般的平稳信号效果特别好。(Spectrum_sub is spectral subtraction function, using the spectral subtraction method to achieve the purpose of noise reduction, for general stationary signal effect is very good.)
- 2014-09-17 15:30:36下载
- 积分:1
-
work2
用matlab编写的影像处理中的加法和减法。(Prepared using matlab image processing of addition and subtraction.)
- 2008-01-04 16:48:47下载
- 积分:1
-
AFuzzySetBasedReconstructedPhase
这篇文章讲述基于相空间重构的模糊集用于复时间序列的暂态模式。文章详细说明关于时间序列的构建、说明暂态识别的概念、原理,优化函数的选择和优化结果等均有很好的步骤和完整实验结果。(This article describes the phase space reconstruction based on fuzzy sets for the transient model complex time series. Article details the construction of time series to illustrate the concept of transient identification, theory, optimal function of the selection and optimization results of the steps are very good and complete results.)
- 2010-05-11 11:43:23下载
- 积分:1
-
MATLABover
matlab复习资料,提供matlab考试的复习大纲(Matlab review of the information provided Matlab examination Zoning Review)
- 2006-10-26 17:43:24下载
- 积分:1
-
compare-clustering-algorithms
这是个人总结的各种聚类算法的优缺点比较,包括了常用的一些聚类算法,如层次聚类算法、分割聚类算法、基于约束的算法等(The comparison of various clustering algorithms by myself,including 5 common clustering algorithms)
- 2013-11-17 09:48:51下载
- 积分:1
-
LIVRE_Automatique-Systemes-linaires-non-linEAires
LIVRE_Automatique-Systemes-linaires-non linEAires
- 2015-02-18 07:37:47下载
- 积分:1
-
CHAOTIC
说明: 有关于混沌系统的特性的一些仿真程序,试过的,可以正确运行,希望大家能够交流。(About some of the characteristics of chaotic system simulation program, tried, and can be run properly, I hope we can exchange.)
- 2011-03-19 16:23:00下载
- 积分:1
-
NewK-means-clustering-algorithm
说明: 珍藏版,可实现,新K均值聚类算法,分为如下几个步骤:
一、初始化聚类中心
1、根据具体问题,凭经验从样本集中选出C个比较合适的样本作为初始聚类中心。
2、用前C个样本作为初始聚类中心。
3、将全部样本随机地分成C类,计算每类的样本均值,将样本均值作为初始聚类中心。
二、初始聚类
1、按就近原则将样本归入各聚类中心所代表的类中。
2、取一样本,将其归入与其最近的聚类中心的那一类中,重新计算样本均值,更新聚类中心。然后取下一样本,重复操作,直至所有样本归入相应类中。
三、判断聚类是否合理
采用误差平方和准则函数判断聚类是否合理,不合理则修改分类。循环进行判断、修改直至达到算法终止条件。(NewK-means clustering algorithm ,Divided into the following several steps:
A, initialize clustering center
1, according to the specific problems, from samples with experience selected C a more appropriate focus the sample as the initial clustering center.
2, with former C a sample as the initial clustering center.
3, will all samples randomly divided into C, calculate the sample mean, each the sample mean as the initial clustering center.
Second, initial clustering
1, according to the sample into the nearest principle clustering center represents the class.
2, as this, take the its recent as clustering center of that category, recount the sample mean, update clustering center. And then taking off, as this, repeated operation until all samples into the corresponding class.
Three, judge clustering is reasonable
Adopt error squares principles function cluster analysis.after clustering whether reasonable, no reasonable criterion revisio)
- 2011-04-06 20:45:56下载
- 积分:1