-
Regression
介绍回归问题中高斯过程的应用,C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning,(Gaussian regression problem introduced in the application process, CE Rasmussen & CKI Williams, Gaussian Processes for Machine Learning,)
- 2009-05-02 11:08:55下载
- 积分:1
-
Hough_Algorithm
本代码是基于matlab开发的用于图像处理中针对灰度图像进行的直线匹配检测(Detect lines in grayscale image by matlab)
- 2009-12-31 16:42:18下载
- 积分:1
-
intc-sh73a0
sh73a0 processor support - INTC hardware block.
- 2014-09-09 13:12:20下载
- 积分:1
-
cmake-3.0.0.tar
cmake-3.0.0.tar.gz
CMake是一个跨平台的安装(编译)工具,可以用简单的语句来描述所有平台的安装(编译过程)。(cmake-3.0.0.tar.gz CMake is a cross-platform installation (compiled) tool, you can use a simple sentence to describe the installation for all platforms (compilation).)
- 2014-11-04 20:49:53下载
- 积分:1
-
Mono
实现单稳触发功能,扩展输入信号为指定时常(a implement of mono,expand the input signal to a given time)
- 2013-12-05 12:45:23下载
- 积分:1
-
Chaos
一个简单的混沌程序,可以看到分叉的现象和振荡的现象。(A simple chaotic process, you can see the phenomenon of bifurcation and oscillation)
- 2016-06-18 13:22:27下载
- 积分:1
-
Volterra_luzhenbo
说明: Volterra自适应预测的 matlab 程序,用于自适应预测测试和混沌序列的相空间重构(转)(Volterra adaptive prediction Matlab procedures for testing and adaptive prediction chaotic sequence of phase space Reconstruction (switch))
- 2006-03-29 17:16:46下载
- 积分:1
-
Smscorrelation
线性相关
求逐月异常序列x(n,12)和y(n,12)(n是年)的相关系数r(24),其中j=1~12是1~12个月的情形,13~22是冬、春、夏、秋、冬季逐月、春季逐月、夏季逐月、秋季逐月、逐月、年、冬半年逐月(NDJFMA)、夏半年逐月(MJJASO)的序列的情形。(Linearly related to demand monthly abnormal sequence x (n, 12) and y (n, 12) (n is the year) the correlation coefficient r (24), where j = 1 ~ 12 1 ~ 12 months is the case, 13 22 is a winter, spring, summer, autumn and winter month by month, month by month in spring, summer, month by month, the monthly fall, month by month, year, month by month in winter (NDJFMA), summer half year monthly (MJJASO) the sequence circumstances.)
- 2010-05-28 10:03:30下载
- 积分:1
-
ctl_progress
HERE is a smapmpke of my code
- 2013-12-02 15:10:33下载
- 积分:1
-
rbf
建立一个径向基神经网络,对非线性函数y=sqrt(x)进行逼近,并作出网络的逼近误差(The establishment of a radial basis function neural network, the nonlinear function y = sqrt (x) to approximate, and make the network approximation error)
- 2014-05-19 16:47:11下载
- 积分:1