-
juxingxinhao2
产生周期矩形信号的matlab源程序,希望对大家有帮助(Produce periodic rectangular signal matlab source, we want to help)
- 2012-10-19 01:19:34下载
- 积分:1
-
text1
本代码用matlab编写Runge-Kutta算法程序,并且用ode45函数的编写代码进行对比分析。(The code is written using Runge-Kutta algorithm matlab program, and were analyzed by writing code ode45 function)
- 2014-01-17 09:41:19下载
- 积分:1
-
onedim
一种用于实现粒子滤波的matlab代码,带中文注释(A particle filter used to realize the matlab code, with English Notes)
- 2008-04-20 11:05:43下载
- 积分:1
-
miaob
说明: 电子数字秒表(1. 开始时,显示“00”,第1次按下SP1后就开始计时。
(2. 第2次按SP1后,计时停止。
(3. 第3次按SP1后,计时归零
(Electronic digital stopwatch (1. Beginning to show " 00" , 1st time by pressing start after SP1. (2. The first two sub-prime mortgage SP1, the time to stop. (3. Article 3 times by SP1, the time go Zero)
- 2010-03-20 17:29:16下载
- 积分:1
-
read_letter
this is a code in matlab for character recognition depending on correlation
- 2009-05-24 16:45:31下载
- 积分:1
-
GA_f6
Genetic Algorithm for optimization
- 2012-10-05 15:36:30下载
- 积分:1
-
lle
一个lle的matlab代码,完成我自己硕士论文时所编写(Lle of a matlab code to complete my master s thesis written at)
- 2008-12-11 11:04:11下载
- 积分:1
-
@linear
针对SVM法线特征筛选算法仅考虑法线对特征筛选的贡献,而忽略了特征分布对特征筛选的贡献的不足,在对SVM法线算法进行分析的基础上,基于特征在正、负例中出现概率的不同提出了加权SVM法线算法,该算法考虑到了法线和特征的分布.通过试验可以看出,在使用较小的特征空间时,与SVM法线算法和信息增益算法相比,加权SVM法线算法具有更好的特征筛选性能.(Normal feature selection for SVM algorithm only considered normal for the contribution of feature selection, to the neglect of the characteristics of the distribution of feature selection have contributed to the lack of normal SVM algorithm based on the analysis, based on the characteristics of the positive and negative cases emergence of a different probability-weighted normal SVM algorithm, which takes into account the distribution and characteristics of normal. through the test can be seen in the use of smaller feature space, the normal and the SVM algorithm and information gain algorithm, normal weighted SVM algorithm has better performance of feature selection.)
- 2008-01-08 21:38:17下载
- 积分:1
-
sparfilt
优点:1.对于信噪比高的信号滤波效果好;
% 2.对于边沿的保护强过阈值滤波,不会产生阈值滤波情况下的过于平滑与Gibbs现象。
%缺点:1.由于对边沿信号没做任何处理,所以边沿可能会有脉冲噪声保留下来;
% 2.计算相关系数中,如果计算出来的小波系数点位置偏差大,则相关系数计算受影响;
% 3.需要迭代运算,迭代的噪声能量阈值选取很重要,这里以开始段无信号处估计噪声;
% 4.需要迭代运算,所以运算量比阈值法大;
% 5.受分解层次影响,在大尺度上小波系数点位置偏差更大,相关系数计算不准确。
%需要具体调整的地方:1.分解的尺度;()
- 2008-03-28 10:26:51下载
- 积分:1
-
SVG_MEASURE2
matlab 无功电流检测 ip-iq法(matlab reactive current detection ip-iq method)
- 2012-06-17 12:26:22下载
- 积分:1