登录
首页 » matlab » BNL

BNL

于 2009-02-02 发布 文件大小:240KB
0 190
下载积分: 1 下载次数: 43

代码说明:

  The BNL toolbox is a set of Matlab functions for defining and estimating the parameters of a Bayesian network for discrete variables in which the conditional probability tables are specified by logistic regression models. Logistic regression can be used to incorporate restrictions on the conditional probabilities and to account for the effect of covariates. Nominal variables are modeled with multinomial logistic regression, whereas the category probabilities of ordered variables are modeled through a cumulative or adjacent-categories response function. Variables can be observed, partially observed, or hidden.

文件列表:

additional
..........\adj_logistic.m
..........\adj_logit.m
..........\cum_logistic.m
..........\cum_logit.m
..........\deriv_adj_logist.m
..........\deriv_cum_logist.m
..........\deriv_multinom_logist.m
..........\dummycode.m
..........\infocrit.m
..........\multinom_logistic.m
..........\multinom_logit.m
..........\multinornd.m
..........\randvector.m
BNL manual.pdf
constructbnt
............\franks_from_BNT.m
............\franks_mk_adj_mat.m
............\inv_order.m
............\link_pot_to_CPT.m
designmatrices
..............\check_order.m
..............\construct_design_mats.m
..............\construct_lin_pred.m
..............\construct_predmat.m
..............\cov_into_design.m
..............\define_lin_pred_struct_cov_default.m
..............\define_lin_pred_struct_cov_main.m
..............\define_lin_pred_struct_main.asv
..............\define_lin_pred_struct_main.m
..............\define_lin_pred_struct_sat.m
estimation
..........\compute_JPTs.m
..........\compute_suff_stats.m
..........\compute_suff_stats_ind.m
..........\construct_bigCPTs.m
..........\construct_equiv_class_CPT.m
..........\construct_sCPT.m
..........\EM_iteration.m
..........\find_max_configs.asv
..........\find_max_configs.m
..........\fit_multinom_logistic.m
..........\fit_ordered_logistic.m
..........\gen_random_start.m
..........\loglik.m
..........\max_marginalization.m
..........\num_infomatrix_anal_score.m
..........\score.m
..........\update_parms.m
example_models
..............\alarm with restrictions
..............\.......................\comparemodels.m
..............\.......................\construct_alarm.m
..............\.......................\fit_model_cumul.m
..............\.......................\fit_model_cumul50.asv
..............\.......................\fit_model_cumul50.m
..............\.......................\fit_model_cumul50_test.asv
..............\.......................\fit_model_cumul50_test.m
..............\.......................\fit_model_cumul_test.m
..............\.......................\fit_model_norest.asv
..............\.......................\fit_model_norest.m
..............\.......................\fit_model_norest_test.asv
..............\.......................\fit_model_norest_test.m
..............\.......................\gen_alarm_start.asv
..............\.......................\gen_alarm_start.m
..............\.......................\simulate50_50.m
..............\anorex
..............\......\construct_bnet_hier_hmm.m
..............\......\construct_bnet_hmm.m
..............\......\construct_equiv_hier_hmm.m
..............\......\define_lin_pred_struct_hier_hmm_main.m
..............\......\equiv_classes_hier_hmm.m
..............\......\equiv_classes_hmm.m
..............\......\fit_model_hier_hmm.m
..............\......\fit_model_hier_hmm_maineffects.m
..............\......\fit_model_hier_hmm_time.m
..............\......\fit_model_hier_hmm_timesq.m
..............\......\fit_model_hmm.m
..............\......\link_covariates_to_nodes_hier_hmm_time.m
..............\......\link_covariates_to_nodes_hier_hmm_timesq.m
..............\......\loadtime.m
..............\......\loadtimesamplingdata.m
..............\brain
..............\.....\construct_bnet_hmm_theta.m
..............\.....\fit_modelbrain_domain_theta.m
..............\.....\fit_modelbrain_domain_theta_treat.m
..............\.....\fit_modelbrain_hmm.m
..............\.....\fit_modelbrain_hmm_domain.m
..............\hmm
..............\...\construct_bnet_hmm.m
..............\...\fit_model_hmm.m
..............\...\generate_hmm_data.m
..............\...\hmm.xls
..............\mixed_lltm
..............\..........\construct_bnet_mixlltm.m
..............\..........\fit_model_mixed_lltm.m
gausskwad
.........\herzo.m
generate_data
.............\generate_bnet_data.m

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • MATLAB7.Xyuandaima
    《MATLAB 7.X程序设计》-王建卫-源代码及习题答案,用以初学者(" MATLAB 7.X programming" - Wang Wei- the source code and problem sets for beginners)
    2010-09-05 21:07:48下载
    积分:1
  • LTE
    基于MATLAB仿真平台的LTE系统仿真(MATLAB simulation platform based on the LTE system simulation)
    2009-11-03 16:26:04下载
    积分:1
  • Matlab-Simulation-for-Com-(1)
    Matlab Simulation for Comparison of Different QAM Constellations and Mapping for a Channel with Additive White Gausian Noise
    2013-12-06 06:00:09下载
    积分:1
  • Passeges
    实现了电梯客流仿真,且运行结果与实际相符(realize the simulation of passengers who will take elevator. The results are the same as fact. )
    2012-02-26 01:20:43下载
    积分:1
  • 11111
    广义预测控制(GPC)仿真广义预测控制(GPC)仿真广义预测控制(GPC)仿真(GPC)
    2020-11-19 19:59:38下载
    积分:1
  • MATLAB-wentaiwucha
    本文分析说明了如何利用MATLAB实现控制系统稳态误差的计算及稳态误差曲线的绘制,并通过一个控制系统实例做了详细介绍。(This analysis shows how to use MATLAB to achieve steady-state error control system and the calculation of steady-state error curve drawing, and a control system example by a detailed description.)
    2011-09-27 18:01:48下载
    积分:1
  • Decomposition_LU
    将系数矩阵A转变成等价两个矩阵L和U的乘积 ,其中L和U分别是下三角和上三角矩阵。当A的所有顺序主子式都不为0时,矩阵A可以唯一的分解为A=LU。其中L是单位下三角矩阵,U是上三角矩阵。 (The coefficient matrix A into two matrices L and U is equivalent to the product, where L and U are lower triangular and upper triangular matrix. When A master style is not all the sequence is 0, the matrix A can only be decomposed into A = LU. Where L is unit lower triangular matrix, U is upper triangular matrix.)
    2011-06-21 21:16:09下载
    积分:1
  • paprqam3
    The PAPR of QAM system is plotted against Complementary cumulative distribution function
    2014-02-11 13:20:32下载
    积分:1
  • dianlidianzijishufangzhen
    电力电子技术各种基本电路的Simulink仿真,比如单相半波,单相全波,三相半波,三相全波,三相桥式等等各种电子电路的仿真(Simulink power electronics technology of basic circuit simulation, such as single-phase half-wave, single-phase full-wave, three-phase half wave, full wave simulation of three-phase, three-phase bridge so a variety of electronic circuits)
    2014-04-12 17:40:06下载
    积分:1
  • BPSK
    BPSK调制,包括误码率统计和误符号率统计(BPSK modulation, including bit error rate and symbol error rate statistics Statistics)
    2010-12-30 21:18:23下载
    积分:1
  • 696518资源总数
  • 106161会员总数
  • 5今日下载