登录
首页 » matlab » BNL

BNL

于 2009-02-02 发布 文件大小:240KB
0 163
下载积分: 1 下载次数: 43

代码说明:

  The BNL toolbox is a set of Matlab functions for defining and estimating the parameters of a Bayesian network for discrete variables in which the conditional probability tables are specified by logistic regression models. Logistic regression can be used to incorporate restrictions on the conditional probabilities and to account for the effect of covariates. Nominal variables are modeled with multinomial logistic regression, whereas the category probabilities of ordered variables are modeled through a cumulative or adjacent-categories response function. Variables can be observed, partially observed, or hidden.

文件列表:

additional
..........\adj_logistic.m
..........\adj_logit.m
..........\cum_logistic.m
..........\cum_logit.m
..........\deriv_adj_logist.m
..........\deriv_cum_logist.m
..........\deriv_multinom_logist.m
..........\dummycode.m
..........\infocrit.m
..........\multinom_logistic.m
..........\multinom_logit.m
..........\multinornd.m
..........\randvector.m
BNL manual.pdf
constructbnt
............\franks_from_BNT.m
............\franks_mk_adj_mat.m
............\inv_order.m
............\link_pot_to_CPT.m
designmatrices
..............\check_order.m
..............\construct_design_mats.m
..............\construct_lin_pred.m
..............\construct_predmat.m
..............\cov_into_design.m
..............\define_lin_pred_struct_cov_default.m
..............\define_lin_pred_struct_cov_main.m
..............\define_lin_pred_struct_main.asv
..............\define_lin_pred_struct_main.m
..............\define_lin_pred_struct_sat.m
estimation
..........\compute_JPTs.m
..........\compute_suff_stats.m
..........\compute_suff_stats_ind.m
..........\construct_bigCPTs.m
..........\construct_equiv_class_CPT.m
..........\construct_sCPT.m
..........\EM_iteration.m
..........\find_max_configs.asv
..........\find_max_configs.m
..........\fit_multinom_logistic.m
..........\fit_ordered_logistic.m
..........\gen_random_start.m
..........\loglik.m
..........\max_marginalization.m
..........\num_infomatrix_anal_score.m
..........\score.m
..........\update_parms.m
example_models
..............\alarm with restrictions
..............\.......................\comparemodels.m
..............\.......................\construct_alarm.m
..............\.......................\fit_model_cumul.m
..............\.......................\fit_model_cumul50.asv
..............\.......................\fit_model_cumul50.m
..............\.......................\fit_model_cumul50_test.asv
..............\.......................\fit_model_cumul50_test.m
..............\.......................\fit_model_cumul_test.m
..............\.......................\fit_model_norest.asv
..............\.......................\fit_model_norest.m
..............\.......................\fit_model_norest_test.asv
..............\.......................\fit_model_norest_test.m
..............\.......................\gen_alarm_start.asv
..............\.......................\gen_alarm_start.m
..............\.......................\simulate50_50.m
..............\anorex
..............\......\construct_bnet_hier_hmm.m
..............\......\construct_bnet_hmm.m
..............\......\construct_equiv_hier_hmm.m
..............\......\define_lin_pred_struct_hier_hmm_main.m
..............\......\equiv_classes_hier_hmm.m
..............\......\equiv_classes_hmm.m
..............\......\fit_model_hier_hmm.m
..............\......\fit_model_hier_hmm_maineffects.m
..............\......\fit_model_hier_hmm_time.m
..............\......\fit_model_hier_hmm_timesq.m
..............\......\fit_model_hmm.m
..............\......\link_covariates_to_nodes_hier_hmm_time.m
..............\......\link_covariates_to_nodes_hier_hmm_timesq.m
..............\......\loadtime.m
..............\......\loadtimesamplingdata.m
..............\brain
..............\.....\construct_bnet_hmm_theta.m
..............\.....\fit_modelbrain_domain_theta.m
..............\.....\fit_modelbrain_domain_theta_treat.m
..............\.....\fit_modelbrain_hmm.m
..............\.....\fit_modelbrain_hmm_domain.m
..............\hmm
..............\...\construct_bnet_hmm.m
..............\...\fit_model_hmm.m
..............\...\generate_hmm_data.m
..............\...\hmm.xls
..............\mixed_lltm
..............\..........\construct_bnet_mixlltm.m
..............\..........\fit_model_mixed_lltm.m
gausskwad
.........\herzo.m
generate_data
.............\generate_bnet_data.m

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 利用差分进化算法 Rosenbrock
    利用差分进化算法(Differential Evolution)实现对经典函数rosenblock的验证(The use of differential evolution algorithm (Differential Evolution) to achieve the verification of classical function rosenblock)
    2020-06-26 20:40:01下载
    积分:1
  • STAP
    说明:  全自由度空时自适应处理MATLAB仿真程序,可供学习参考(The matlab simulation program can be used as a reference for learning stap.)
    2020-12-24 19:39:05下载
    积分:1
  • boat_sqr_sin_n
    说明:  舰船辐射噪声频谱分析,用于模拟舰船辐射噪声信号及分析(boat noise processing)
    2021-02-25 10:59:38下载
    积分:1
  • sepa
    separate mental tasks of EEG file
    2010-07-19 03:23:42下载
    积分:1
  • PN_sequence
    PN sequence generation using matlab
    2009-04-18 14:31:15下载
    积分:1
  • tuxiangdesuofang
    实用MATLAB对图像进行处理,主要是图像的缩放,滤波 (Practical MATLAB image processing, image zoom, filtering)
    2012-07-17 20:09:12下载
    积分:1
  • Assembly-Language-for-x86-Processors-(6th-Edition
    Assembly Language for x86 Processors by Kip Irvine
    2013-02-24 04:29:11下载
    积分:1
  • code
    Study of Economic dispatch of thermal generating units neglecting losses and including generator limits by using Gradient method.
    2014-10-29 22:34:50下载
    积分:1
  • Rayleigh
    仿真瑞利衰落信道,可以满足不同用户的对与瑞利衰落信道的要求(Rayleigh fading channel simulation to meet the different users with Rayleigh fading channel requirements)
    2008-05-01 20:17:37下载
    积分:1
  • aa
    说明:  在过去的几年中, 背包问题吸引了众多理论研究人员和应用工作者的注意力, 因而得到了广泛而深入的研究。理论方面, 研究兴趣主要来自于该问题简单的结构, 而这种特点既可以深入探索许多组合特性, 又可以通过解决一系列背包子问题来最终求解更为复杂的优化问题。实践方面, 这些问题可以表述许多工业场合的应用, 最典型的应用包括货 物装载、存储分配和资本预算等等。在寻找背包问题可行解的过程中, 出现了众多的算法, 本文是利用MATLAB 程序求背包问题可行解的一种算法。(In the past few years, knapsack problem has attracted many researchers and application of theoretical attention of workers, which has been extensive and in-depth study. Theory, research interest mainly from the simple structure of the problem, and this characteristic combination of both in-depth exploration of many features, but also can solve a series of knapsack sub-problems to solve more complex final optimization problem. Practice, these problems can be expressed in many industrial applications where the most typical applications include cargo loading, storage, distribution and capital budgets, and so on. Knapsack problem in finding feasible solutions in the process, there have been many algorithms, this is the knapsack problem using MATLAB program seeking a feasible solution algorithm.)
    2011-12-01 11:45:25下载
    积分:1
  • 696518资源总数
  • 105531会员总数
  • 4今日下载