登录
首页 » matlab » Matlabchengxushejiyuanma

Matlabchengxushejiyuanma

于 2007-09-26 发布 文件大小:33KB
0 201
下载积分: 1 下载次数: 83

代码说明:

  上百种Matlab程序设计的源码,希望对初学者有一些帮助。(Hundreds of Matlab programming source code, and they hope to have some help for beginners.)

文件列表:

Matlab程序设计源代码
....................\《MATLAB程序设计教程》源代码-2660
....................\.................................\charray.m
....................\.................................\COMM.m
....................\.................................\ex10_2.m
....................\.................................\ex10_3.m
....................\.................................\ex10_4.m
....................\.................................\ex10_5.m
....................\.................................\ex10_6.m
....................\.................................\ex10_7.m
....................\.................................\ex10_8.m
....................\.................................\ex11_1.m
....................\.................................\ex11_2.m
....................\.................................\ex11_3.m
....................\.................................\ex11_4.m
....................\.................................\ex1_1.m
....................\.................................\ex1_2.m
....................\.................................\ex1_3.m
....................\.................................\ex1_4.m
....................\.................................\ex2_1.m
....................\.................................\ex2_11.m
....................\.................................\ex2_12.m
....................\.................................\ex2_13.m
....................\.................................\ex2_14.m
....................\.................................\ex2_15.m
....................\.................................\ex2_16.m
....................\.................................\ex2_4.m
....................\.................................\ex3_1.m
....................\.................................\ex3_10.m
....................\.................................\ex3_11.m
....................\.................................\ex3_12.m
....................\.................................\ex3_13.m
....................\.................................\ex3_19.m
....................\.................................\ex3_2.m
....................\.................................\ex3_20.m
....................\.................................\ex3_21.m
....................\.................................\ex3_23.m
....................\.................................\ex3_3.m
....................\.................................\ex3_4.m
....................\.................................\ex3_5.m
....................\.................................\ex3_6.m
....................\.................................\ex3_7.m
....................\.................................\ex3_8.m
....................\.................................\ex3_9.m
....................\.................................\ex4_2.m
....................\.................................\ex4_3.m
....................\.................................\ex5_1.m
....................\.................................\ex5_10.m
....................\.................................\ex5_11.m
....................\.................................\ex5_12.m
....................\.................................\ex5_13.m
....................\.................................\ex5_14.m
....................\.................................\ex5_15.m
....................\.................................\ex5_16.m
....................\.................................\ex5_17.m
....................\.................................\ex5_18.m
....................\.................................\ex5_19.m
....................\.................................\ex5_2.m
....................\.................................\ex5_20.m
....................\.................................\ex5_21.m
....................\.................................\ex5_22.m
....................\.................................\ex5_23.m
....................\.................................\ex5_24.m
....................\.................................\ex5_25.m
....................\.................................\ex5_26.m
....................\.................................\ex5_27.m
....................\.................................\ex5_3.m
....................\.................................\ex5_4.m
....................\.................................\ex5_5.m
....................\.................................\ex5_6.m
....................\.................................\ex5_7.m
....................\.................................\ex5_8.m
....................\.................................\ex5_9.m
....................\.................................\ex6_13.m
....................\.................................\ex6_15.m
....................\.................................\ex7_1.m
....................\.................................\ex7_2.m
....................\.................................\ex7_3.m
....................\.................................\ex7_4.m
....................\.................................\ex7_5.m
....................\.................................\ex7_6.m
....................\.................................\ex7_7.m
....................\.................................\ex8_3.m
....................\.................................\ex8_4.m
....................\.................................\ex8_7.m
....................\.................................\factor.m
....................\.................................\fcircle.m
....................\.................................\fesin.m
....................\.................................\ffib.m
....................\.................................\funt.m
....................\.................................\funx.m
....................\.................................\fx.m
....................\.................................\fxy.m
....................\.................................\fxyz.m
....................\.................................\gauseidel.m
....................\.................................\jacobi.m
....................\.................................\lorenz.m
....................\.................................\main1.m
....................\.................................\main2.m
....................\.................................\mydemo.m

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • yiqun
    说明:  用MATLAB写的蚁群算法实现蚁群算法基本功能,希望对大家有用。(Written by ant colony algorithm using MATLAB to achieve the basic function of ant colony algorithm, i hope it is useful to you.)
    2010-04-08 22:56:12下载
    积分:1
  • mmn排队论matlab GUI源文件
    说明:  matlab GUI源文件实现MMN排队论的动画演示和计算功能,直接点击运行。(The matlab GUI source file implements the animation demonstration and calculation functions of MMN queue theory, which can be clicked to run directly.)
    2021-04-11 18:28:57下载
    积分:1
  • dabasuanfa
    说明:  非线性微分方程边值问题打靶算法Matlab程序(Shooting Algorithm for Nonlinear Differential Equations Matlab program)
    2011-04-13 16:33:50下载
    积分:1
  • medfiltnet
    image filtering to reduce difrent type of noise
    2012-06-02 20:25:44下载
    积分:1
  • DigitalSignalProcessingAnditsApplicationInMatlab
    是一本Matlab方面入门的好教材,是初学者的最佳选择(Matlab is a good material for aspects of entry is the best choice for beginners)
    2008-07-09 19:09:26下载
    积分:1
  • jsscx2
    近似熵MATLAB的计算程序2,可以通过此程序对脑电信号EEG进行分析,达到你要的结果。程序仅供参考,里面可能有少许不足之处,希望大家不吝赐教。(approximate entropy MATLAB program two, through this procedure right EEG EEG analysis to achieve the results you want. Procedures for reference purposes only, which may have some shortcomings, we hope that substantive progress has spared no.)
    2007-05-11 10:07:49下载
    积分:1
  • Chuong-1-Ly-thuyet-thong-tin
    COmmunication Information Chap I
    2014-10-03 10:29:43下载
    积分:1
  • 1
    Eigenfunctions of integrable planar billiards are studied — in particular, the number of nodal domains, ν of the eigenfunctions with Dirichlet boundary conditions are considered. The billiards for which the time-independent Schrö dinger equation (Helmholtz equation) is separable admit trivial expressions for the number of domains. Here, we discover that for all separable and nonseparable integrable billiards, ν satisfies certain difference equations. This has been possible because the eigenfunctions can be classified in families labelled by the same value ofm mod kn, given a particular k, for a set of quantum numbers, m, n. Further, we observe that the patterns in a family are similar and the algebraic representation of the geometrical nodal patterns is found. Instances of this representation are explained in detail to understand the beauty of the patterns. This paper therefore presents a mathematical connection
    2014-10-06 20:57:54下载
    积分:1
  • dsb_modulation
    dsb modulation in matlab
    2011-12-20 03:59:02下载
    积分:1
  • psd_est
    Power Spectrum Estimation
    2009-10-05 18:08:55下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载