-
program18
振动原理与分析计算机大作业
求解非线性振动分析,公式根据书中的
用计算方法的4阶 r-k数值方法(Vibration theory and analysis of computer operations for solving large non-linear vibration analysis of the formula calculation method according to the book of 4-order numerical method rk)
- 2010-02-09 03:35:03下载
- 积分:1
-
3
说明: matlab电机仿真精华50例\异步电机abo仿真模型(matlab simulation of the essence of 50 cases of electric induction motor simulation model abo)
- 2008-07-24 12:11:22下载
- 积分:1
-
texture_extract
纹理提取的matlab 源代码, 研究图像处理算法的可参考(texture extraction of Matlab source code, image processing algorithm research of reference)
- 2006-06-01 13:04:46下载
- 积分:1
-
mvm
空间普估计之mvm算法 此算法是music算法的改进算法(S & P estimates mvm space algorithm This algorithm is music algorithm improved algorithm)
- 2011-09-13 09:58:23下载
- 积分:1
-
zjtl
证据推理的一个算法,可以改成matlab的语言代码(Evidential reasoning)
- 2013-03-16 10:22:36下载
- 积分:1
-
code-(5)
MATLAB CODE FOR GEOMETRIC TRANSFORMATION
- 2015-02-04 13:53:36下载
- 积分:1
-
Auxiliary-matlab-
Auxiliary matlab image processing source 适用于一些基本图像处理的源代码,里面包含了多种图像图例方式的源程序。(Auxiliary matlab image processing source applies to some basic image processing source code, containing a variety of image source program legend way.)
- 2015-03-29 15:12:33下载
- 积分:1
-
PgmRead
Reading a PGM image file
- 2009-11-25 12:48:51下载
- 积分:1
-
sigpower
信号功率计算,输入信号序列,得到统计的平均功率(The signal power calculation)
- 2010-03-10 10:49:53下载
- 积分:1
-
fractal-use
分形的练习一
①Koch曲线
用复数的方法来迭代Koch曲线
clear i 防止i被重新赋值
A=[0 1] 初始A是连接(0,0)与(1,0)的线段
t=exp(i*pi/3)
n=2 n是迭代次数
for j=0:n
A=A/3 a=ones(1,2*4^j)
A=[A (t*A+a/3) (A/t+(1/2+sqrt(3)/6*i)*a) A+2/3*a]
end
plot(real(A),imag(A))
axis([0 1 -0.1 0.8])
②Sierpinski三角形
A=[0 1 0.5 0 0 1] 初始化A
n=3 迭代次数
for i=1:n
A=A/2 b=zeros(1,3^i) c=ones(1,3^i)/2
A=[A A+[c b] A+[c/2 c]]
end
for i=1:3^n
patch(A(1,3*i-2:3*i),A(2,3*i-2:3*i), b ) patch填充函数
end
(Fractal
Exercise One
The ① Koch curve
Plural iteration Koch curve
clear i to prevent i is reassigned
A = [0 1] initial A is a connection (0,0) and (1,0) of the segments
t = exp (i* pi/3)
n = 2 n is the number of iterations
for j = 0: n
A = A/3 a = ones (1,2* 4 ^ j)
A = [A (t* A+ a/3) (A/t+ (1/2+ sqrt (3)/6* i)* a) A+2/3* a]
end
plot (real (A), imag (A))
axis ([0 1-0.1 0.8])
② Sierpinski triangle
A = [0 1 0.5 0 0 1] initialized A
n = 3 the number of iterations.
for i = 1: n
A = A/2 b = zeros (1,3 ^ i) c = ones (1,3 ^ i)/2
A = [A A+ [c b] A+ [c/2 c]]
end
for i = 1:3 ^ n
patch (A (1,3* i-2: 3* i), A (2,3* i-2: 3* i), b ) patch filled function
end)
- 2013-03-02 10:03:09下载
- 积分:1