-
zernike
zernike矩的matlab程序,Zernike 矩是一组正交矩,具有旋转不变性的特性。
(matlab program zernike moments, Zernike moments is a set of orthogonal moments, with rotation invariance properties.)
- 2010-09-28 10:47:49下载
- 积分:1
-
GA
说明: 改进型遗传算法的 matlab程序
可以直接运行(GA matlab)
- 2010-05-13 20:04:47下载
- 积分:1
-
particle_swarm_optimization
说明: 使用粒子群算法解决10个城市的旅行商问题 可绘制图形(Use the particle swarm algorithm to solve traveling salesman problem of 10 cities can draw pictures)
- 2011-02-25 21:39:51下载
- 积分:1
-
the-Fractal-Fern
用MATLAB实现的分形蕨类植物,这个程序将永远运行下去,直到停止关闭为止。(MATLAB implementation of the Fractal Fern.This version runs forever, or until stop is toggled.)
- 2012-06-26 20:28:29下载
- 积分:1
-
nn
说明: MATLAB神经网络分类示例,是一种二分类示例,MATLAB2014实现(MATLAB neural network classifier example, is a two classification example, MATLAB2014 achieve)
- 2014-10-24 14:50:21下载
- 积分:1
-
matlab_1
能实现人脸的简单匹配算法,本人亲自测试,还行吧(To achieve a simple matching algorithm, face, OK.)
- 2012-05-03 22:26:22下载
- 积分:1
-
antc
ant colony system approach for unit commitment problem.
- 2017-10-19 05:49:03下载
- 积分:1
-
15
说明: matlab 图像处理 显示两幅子图像的归一化互相关(matlab image processing show that two sub-image of normalized cross-correlation)
- 2010-04-24 09:07:15下载
- 积分:1
-
NewK-means-clustering-algorithm
说明: 珍藏版,可实现,新K均值聚类算法,分为如下几个步骤:
一、初始化聚类中心
1、根据具体问题,凭经验从样本集中选出C个比较合适的样本作为初始聚类中心。
2、用前C个样本作为初始聚类中心。
3、将全部样本随机地分成C类,计算每类的样本均值,将样本均值作为初始聚类中心。
二、初始聚类
1、按就近原则将样本归入各聚类中心所代表的类中。
2、取一样本,将其归入与其最近的聚类中心的那一类中,重新计算样本均值,更新聚类中心。然后取下一样本,重复操作,直至所有样本归入相应类中。
三、判断聚类是否合理
采用误差平方和准则函数判断聚类是否合理,不合理则修改分类。循环进行判断、修改直至达到算法终止条件。(NewK-means clustering algorithm ,Divided into the following several steps:
A, initialize clustering center
1, according to the specific problems, from samples with experience selected C a more appropriate focus the sample as the initial clustering center.
2, with former C a sample as the initial clustering center.
3, will all samples randomly divided into C, calculate the sample mean, each the sample mean as the initial clustering center.
Second, initial clustering
1, according to the sample into the nearest principle clustering center represents the class.
2, as this, take the its recent as clustering center of that category, recount the sample mean, update clustering center. And then taking off, as this, repeated operation until all samples into the corresponding class.
Three, judge clustering is reasonable
Adopt error squares principles function cluster analysis.after clustering whether reasonable, no reasonable criterion revisio)
- 2011-04-06 20:45:56下载
- 积分:1
-
Vc-and-Matlab-with-com
在VC++环境下,利用Com组件实现Vc和Matlab混合编程案例(Vc and Matlab with com)
- 2021-03-04 19:59:32下载
- 积分:1