-
BP-classification
BP神经网络图像分类程序,代码很好懂,适合初学者。样本选的不是很大。(BP neural network image classification procedures, code easy to understand for beginners. Sample selected is not great.)
- 2013-07-24 18:19:51下载
- 积分:1
-
jpegyasuo
jpeg压缩代码 An example for jpeg compression and the restoration。(The attached utility is a work I ve submitted to the university. It shows what a jpeg compression is all about.)
- 2013-11-19 11:35:58下载
- 积分:1
-
cvpr09-(matlab)
何凯明的基于暗原色先验的去雾代码,去雾效果很好(Kaiming dark colors based on a priori defogging code defogging good effect)
- 2016-02-13 15:14:54下载
- 积分:1
-
imagequality
说明: 自己编写的图像质量评价函数,包括方差、平均梯度、模糊熵、信息熵(I have written the image quality evaluation function, including the variance, with an average gradient, fuzzy entropy, information entropy)
- 2008-11-10 09:52:34下载
- 积分:1
-
Parcial-II
Segmentation Algorithm
- 2013-10-11 02:13:42下载
- 积分:1
-
colorhist
颜色特征提取,为matlab 源文件,是底层图像处理的基本特征之一,是本人在做硕士论文时收集修改的代码(Color Feature Extraction for the matlab source file, the underlying image processing are one of the essential features)
- 2009-02-24 12:02:19下载
- 积分:1
-
摄影测量点云 Grid
摄影测量点云,三维激光点云进行点云特征图像提取进行格网化代码(Photogrammetric point cloud, 3D laser point cloud, point cloud feature image extraction for grid code)
- 2018-10-11 11:54:57下载
- 积分:1
-
EyeTracking-with-OpenCV--
说明: 转载的,通过眨眼前后灰度图对比是别人眼,一个学习opencv工具的好例程。(Reproduced by blinking eyes of others around the grayscale contrast, a learning tool opencv good routine.)
- 2011-03-19 21:57:03下载
- 积分:1
-
cfa_laroche
将RGB格式的图片进行mosaic处理得到RawData格式的图片,然后再恢复成RGB格式彩色图片,laroche-CFA插值算法(turn an RGB picture to RawData picture,then recover the RawData picture to an RGB picture.it is called laroche-CFA.)
- 2020-09-12 13:48:01下载
- 积分:1
-
利用SVM或者其他机器学习算法进行分类识别 LBP
(1)计算图像中每个像素点的LBP模式(等价模式,或者旋转不变+等价模式)。
(2)然后计算每个cell的LBP特征值直方图,然后对该直方图进行归一化处理(每个cell中,对于每个bin,h[i]/=sum,sum就是一副图像中所有等价类的个数)。
(3)最后将得到的每个cell的统计直方图进行连接成为一个特征向量,也就是整幅图的LBP纹理特征向量;
然后便可利用SVM或者其他机器学习算法进行分类识别了。((1) calculate the LBP pattern of each pixel in the image (equivalent mode, or rotation invariant + equivalent mode).
(2) then the LBP eigenvalue histogram of each cell is calculated, and then the histogram is normalized (for each cell, for each bin, h[i]/=sum, sum is the number of all the equivalent classes in a pair of images).
(3) finally, the statistical histogram of each cell is connected into a feature vector, that is, the LBP texture feature vector of the whole picture.
Then, SVM or other machine learning algorithms can be used for classification and recognition.)
- 2020-07-01 20:00:02下载
- 积分:1