登录
首页 » matlab » KSVD-P-Sparse-Representation

KSVD-P-Sparse-Representation

于 2020-08-13 发布 文件大小:14284KB
0 208
下载积分: 1 下载次数: 447

代码说明:

  K-SVD SPARSE REPRESENTATION 基于学习的稀疏表示图像分析方法,以去噪为例。(K-SVD SPARSE REPRESENTATION)

文件列表:

KSVD %2B Sparse Representation
............................\CVPR_2006_KSVD_Denoising.ppt,2283008,2009-10-17
............................\k_svd matlab toolbox and reference
............................\..................................\k_svd



............................\..................................\.....\demo1.m,1907,2009-09-03
............................\..................................\.....\demo2.m,3561,2006-12-12
............................\..................................\.....\demo3.m,8504,2006-12-28
............................\..................................\.....\denoiseImageDCT.m,5426,2007-01-24
............................\..................................\.....\denoiseImageGlobal.m,6046,2006-12-12
............................\..................................\.....\denoiseImageKSVD.asv,9715,2011-01-20
............................\..................................\.....\denoiseImageKSVD.m,9715,2011-01-20
............................\..................................\.....\displayDictionaryElementsAsImage.asv,3246,2007-01-25
............................\..................................\.....\displayDictionaryElementsAsImage.m,3224,2007-01-25
............................\..................................\.....\gererateSyntheticDictionaryAndData.m,1896,2006-12-11
............................\..................................\.....\globalTrainedDictionary.mat,5749450,2005-09-21

............................\..................................\.....\KSVD.asv,13236,2011-03-15
............................\..................................\.....\KSVD.m,13237,2011-01-14
............................\..................................\.....\KSVD_Matlab_ToolBox


............................\..................................\.....\...................\demo1.m,1907,2009-09-03
............................\..................................\.....\...................\demo2.m,3561,2006-12-12
............................\..................................\.....\...................\demo3.m,8504,2006-12-28
............................\..................................\.....\...................\denoiseImageDCT.m,5426,2007-01-24
............................\..................................\.....\...................\denoiseImageGlobal.m,6046,2006-12-12
............................\..................................\.....\...................\denoiseImageKSVD.m,9088,2007-01-24
............................\..................................\.....\...................\displayDictionaryElementsAsImage.asv,3246,2007-01-25
............................\..................................\.....\...................\displayDictionaryElementsAsImage.m,3224,2007-01-25
............................\..................................\.....\...................\gererateSyntheticDictionaryAndData.m,1896,2006-12-11
............................\..................................\.....\...................\globalTrainedDictionary.mat,5749450,2005-09-21

............................\..................................\.....\...................\KSVD.m,12292,2009-09-03
............................\..................................\.....\...................\KSVD_NN.m,11585,2006-12-28

............................\..................................\.....\...................\MOD.m,8053,2006-12-12
............................\..................................\.....\...................\my_im2col.m,631,2006-12-11
............................\..................................\.....\...................\NN_BP.m,1105,2006-12-24
............................\..................................\.....\...................\OMP.m,954,2007-04-29
............................\..................................\.....\...................\OMPerr.m,1083,2006-12-11

............................\..................................\.....\...................\README.txt,4802,2006-12-28
............................\..................................\.....\KSVD_NN.m,11585,2006-12-28

............................\..................................\.....\MOD.m,8053,2006-12-12
............................\..................................\.....\my_im2col.asv,1069,2011-01-13
............................\..................................\.....\my_im2col.m,1090,2011-01-13
............................\..................................\.....\NN_BP.m,1105,2006-12-24
............................\..................................\.....\OMP.asv,1222,2011-01-14
............................\..................................\.....\OMP.m,1222,2011-01-14
............................\..................................\.....\OMPerr.m,1083,2006-12-11
............................\..................................\.....\peppers256.png,40181,2002-08-29
............................\..................................\.....\README.txt,4802,2006-12-28
............................\..................................\.....\Untitled.asv,263,2011-03-15
............................\..................................\.....\Untitled.m,310,2011-03-15
............................\..................................\The K-SVD_ An Algorithm for Designing of Overcomplete Dictionaries for .pdf,515393,2012-03-21
............................\..................................\中文翻译.txt,103,2012-03-21

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • association_NNSF
    matlab实现的目标跟踪数据关联程序,可以用于目标跟踪领域。(matlab implementation of target tracking data association procedure can be used for target tracking.)
    2010-09-09 14:30:21下载
    积分:1
  • Matlab-FunctionsModified
    matlab functions matlab functions matlab functions
    2010-12-21 15:47:36下载
    积分:1
  • upf_demos
    说明:  % PURPOSE : Demonstrate the differences between the following filters on the same problem: % % 1) Extended Kalman Filter (EKF) % 2) Unscented Kalman Filter (UKF) % 3) Particle Filter (PF) % 4) PF with EKF proposal (PFEKF) % 5) PF with UKF proposal (PFUKF)( PURPOSE: Demonstrate the differences between the following filters on the same problem: 1) Extended Kalman Filter (EKF) 2) Unscented Kalman Filter (UKF) 3) Particle Filter (PF) 4) PF with EKF proposal ( PFEKF) 5) PF with UKF proposal (PFUKF))
    2008-09-13 12:21:05下载
    积分:1
  • Distance
    RSSI是无线传感器网络中一种基于测距的定位方法,本程序中使用对数常态模型来测距离。(RSSI is a wireless sensor network positioning method based on distance, this program is measured with a lognormal model for the distance.)
    2011-10-11 20:07:55下载
    积分:1
  • RaisedCosineFilter
    matlab raisedcosine filter
    2011-10-27 02:40:46下载
    积分:1
  • 光纤耦合MATLAB
    说明:  计算单模光纤与LED 的直接耦合效率,设计光纤透镜参数(The direct coupling efficiency of single mode fiber and LED is calculated and the parameters of optical fiber lens are designed)
    2019-02-25 11:14:43下载
    积分:1
  • Kalman_Filtering_Theory_and_implementation_in_matl
    Kalman滤波理论及其MatLab实现。PDF格式,采用Acrobat Reader7.0以上及兼容版本打开。全文为英文,不喜英文的建议不要下,免得浪费下载数(Kalman Filtering Theory and implementation in matlab.pdf)
    2010-07-26 20:29:37下载
    积分:1
  • spectrum-and-marginal-spectrum
    用希尔伯特黄变换(HHT)求时频谱和边际谱.包括代码、原理、截图分析(Hilbert Huang transform (HHT) Find the spectrum and marginal spectrum, including the code, schematic, screenshot analysis)
    2012-07-08 14:36:37下载
    积分:1
  • DIFG_windfarm
    DIFG风电场的建模仿真包括了多种风速条件下的测试和应用,重点研究扰动风速对电网和风电场本身的影响。(DIFG wind farm modeling and simulation )
    2014-11-02 15:08:43下载
    积分:1
  • gplab.manual.3.ps
    this is a matlab source file
    2012-03-31 00:45:27下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载