-
ipexlucy
It is related to image processing
- 2011-06-22 17:19:40下载
- 积分:1
-
Differential-equation-code
微分方程的求解代码,包括单微风方程,微分方程组。(Differential equation code, including the single breeze equation, differential equations.)
- 2012-04-30 20:56:46下载
- 积分:1
-
the-structure-of-truss
一个桁架结构的动力学响应和主动控制程序,优化算法采用了粒子群方法。仅供参考。(this dissertation discusses the dynamical response and contrlol design of a flexible trussed structure the optimal position of actuator is studied by using the particle swarm optimizer as optimization algorithm.)
- 2011-11-10 22:15:20下载
- 积分:1
-
STDM
利用STDM方法嵌入水印信息,可设置量化步长,选择各种经典的攻击方式,控制攻击强弱,返回误码率和峰值信噪比(Stdm method using embedded watermark information, to set the quantization step size, choose a variety of classic attacks, controlling the strength of the attack and returned to the bit error rate and peak signal to noise ratio)
- 2007-10-26 15:40:16下载
- 积分:1
-
BGf
计算给定图的最小费用最大流计算给定图的最小费用最大流计算给定图的最小费用最大流(Calculated for a given map of the minimum cost maximum flow calculation Given a graph of the minimum cost maximum flow calculation Given a graph of the minimum cost maximum flow)
- 2010-08-17 22:09:17下载
- 积分:1
-
lyap
lyapunov exponent ode
- 2011-11-25 03:16:38下载
- 积分:1
-
fwdcdmafinal
CDMA transceiver Code in MATLAB
- 2014-01-16 00:44:55下载
- 积分:1
-
value_iteration-master
说明: 一种路径规划算法,实现三维路径下的规划,使用的是价值迭代法(A path planning algorithm, which realizes the planning under the three-dimensional path, uses the value iteration method)
- 2020-05-19 20:25:44下载
- 积分:1
-
deepest
对给定的函数进行最速下降法求最低点的例子(a example for deepest method)
- 2009-09-19 14:28:18下载
- 积分:1
-
local_linear_smoothing
Matlab functions implementing non-parametric local linear smoothing (LLS) for one-dimensional curve fitting: yi = f(xi) + ei for i = 1, 2, ..., n. The toolbox contains: (i) the usual LLS estimator, see e.g. [1] (ii) a jump-preserving (two-sided) LLS estimator proposed in [2] (iii) a modified version of the two-sided LLS proposed in [3].(Matlab functions implementing non-parametric local linear smoothing (LLS) for one-dimensional curve fitting: yi = f(xi)+ ei for i = 1, 2, ..., n. The toolbox contains: (i) the usual LLS estimator, see e.g. [1] (ii) a jump-preserving (two-sided) LLS estimator proposed in [2] (iii) a modified version of the two-sided LLS proposed in [3].)
- 2013-05-05 13:17:42下载
- 积分:1