登录
首页 » matlab » STFT_and_wavelet

STFT_and_wavelet

于 2011-06-26 发布 文件大小:937KB
0 280
下载积分: 1 下载次数: 141

代码说明:

  用matlab实现的短时傅里叶变换和小波变换。有文档(Using matlab to achieve short-time Fourier transform and wavelet transform. A document)

文件列表:

代码
....\1.bmp
....\2.bmp
....\3.bmp
....\4.bmp
....\5.bmp
....\6.bmp,2359350,2011-06-26
....\7.bmp,2359350,2011-06-26
....\Short_time.bmp,841830,2011-06-26
....\short_time_FT.m,619,2011-06-26
....\wavelet_tf.m,1152,2011-06-26
短时傅立叶变换和小波变换MATLAB仿真.doc,180736,2011-06-26

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • waveform275khz
    275hz正弦波激励程序,用于模拟波的激发,适用于导波及其他方面,matlab程序(275hz sine wave incentive program for the simulation of wave excitation applied to guide spread to other aspects, matlab program)
    2012-10-23 10:19:17下载
    积分:1
  • xiaobo
    小波变换 小波变换 (Wavelet Transform Wavelet Transform)
    2020-11-09 21:49:46下载
    积分:1
  • CMU-CS
    很好的ica算法,计算ica时候用到,很好参考价值,卡内基学院用的程序(Good ica algorithm to calculate ica when used, a good reference value, the Carnegie Institute program)
    2012-11-02 19:11:53下载
    积分:1
  • 使用小的图像边缘检测算法
    使用小波变换的图像边缘检测算法(use wavelet transform Edge Detection Algorithm)
    2021-03-21 22:09:16下载
    积分:1
  • localpeaks
    用matlab编写找到向量维度的波峰波谷的值.(Prepared using matlab to find vector value of the dimension of the peaks and valleys.)
    2009-09-21 16:05:43下载
    积分:1
  • matlab如何实现fft
    用matlab如何实现fft变换,进而得到经过fft变换后的图像(How to implement FFT transformation with MATLAB)
    2017-10-11 10:31:22下载
    积分:1
  • xiaobobianhuan
    基于小波变换方法的去雾源代码图像复原代码(Wavelet-based approach to image restoration fog source code)
    2021-04-21 17:28:49下载
    积分:1
  • 边缘检测
    基于小波变换模极大的多尺度图像边缘检测matlab源代码(based on wavelet transform modulus maxima of multiscale edge detection Matlab source code)
    2020-06-26 08:00:02下载
    积分:1
  • WaveCluster
    一个基于小波变换的数据聚类样例 Matlab实现(A sample Matlab based on wavelet transform data clustering)
    2020-12-28 19:49:02下载
    积分:1
  • BCS-SPL-1.5-new
    Block-based random image sampling is coupled with a projectiondriven compressed-sensing recovery that encourages sparsity in the domain of directional transforms simultaneously with a smooth reconstructed image. Both contourlets as well as complex-valued dual-tree wavelets are considered for their highly directional representation, while bivariate shrinkage is adapted to their multiscale decomposition structure to provide the requisite sparsity constraint. Smoothing is achieved via a Wiener filter incorporated into iterative projected Landweber compressed-sensing recovery, yielding fast reconstruction. The proposed approach yields images with quality that matches or exceeds that produced by a popular, yet computationally expensive, technique which minimizes total variation. Additionally, reconstruction quality is substantially superior to that from several prominent pursuits-based algorithms that do not include any smoothing
    2020-11-23 19:29:34下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载