登录
首页 » matlab » MATLAB_Codes_for_Competitive_Learning_Algorithms

MATLAB_Codes_for_Competitive_Learning_Algorithms

于 2007-10-08 发布 文件大小:458KB
0 238
下载积分: 1 下载次数: 183

代码说明:

  竞争学习的matlab工具箱,其中包含som网络,rpcl聚类等(Competitive learning matlab toolbox, which contains som network, rpcl clustering, etc.)

文件列表:

MATLAB Codes for Competitive Learning Algorithms
................................................\dataset1.dat
................................................\fscl.m
................................................\gnp.m
................................................\grbf.m
................................................\krbf.m
................................................\lard.m
................................................\larw.m
................................................\llm.m
................................................\ng.m
................................................\rpcl.m
................................................\rsom.m
................................................\skmeans.m
................................................\som.m
................................................\somtoolbox
................................................\..........\cca.m
................................................\..........\Contents.m
................................................\..........\Copyright.txt
................................................\..........\db_index.m
................................................\..........\hits.m
................................................\..........\iris.data
................................................\..........\kmeans_clusters.m
................................................\..........\knn.m
................................................\..........\knn_old.m
................................................\..........\License.txt
................................................\..........\lvq1.m
................................................\..........\lvq3.m
................................................\..........\nanstats.m
................................................\..........\neural_gas.m
................................................\..........\pcaproj.m
................................................\..........\preprocess.m
................................................\..........\rep_utils.m
................................................\..........\sammon.m
................................................\..........\sompak_gui.m
................................................\..........\sompak_init.m
................................................\..........\sompak_init_gui.m
................................................\..........\sompak_rb_control.m
................................................\..........\sompak_sammon.m
................................................\..........\sompak_sammon_gui.m
................................................\..........\sompak_train.m
................................................\..........\sompak_train_gui.m
................................................\..........\somtoolbox.m
................................................\..........\som_autolabel.m
................................................\..........\som_barplane.m
................................................\..........\som_batchtrain.m
................................................\..........\som_bmucolor.m
................................................\..........\som_bmus.m
................................................\..........\som_cldist.m
................................................\..........\som_clget.m
................................................\..........\som_cllinkage.m
................................................\..........\som_clplot.m
................................................\..........\som_clset.m
................................................\..........\som_clspread.m
................................................\..........\som_clstruct.m
................................................\..........\som_clustercolor.m
................................................\..........\som_cod2ind.m
................................................\..........\som_colorcode.m
................................................\..........\som_coloring.m
................................................\..........\som_connection.m
................................................\..........\som_cplane.m
................................................\..........\som_data_struct.m
................................................\..........\som_demo1.m
................................................\..........\som_demo2.m
................................................\..........\som_demo3.m
................................................\..........\som_demo4.m
................................................\..........\som_dendrogram.m
................................................\..........\som_denormalize.m
................................................\..........\som_distortion.m
................................................\..........\som_distortion3.m
................................................\..........\som_divide.m
................................................\..........\som_dmat.m
................................................\..........\som_dmatclusters.m
................................................\..........\som_dmatminima.m
................................................\..........\som_dreval.m
................................................\..........\som_drmake.m
................................................\..........\som_drsignif.m
................................................\..........\som_estimate_gmm.m
................................................\..........\som_eucdist2.m
................................................\..........\som_fillnans.m
................................................\..........\som_fuzzycolor.m
................................................\..........\som_gapindex.m
................................................\..........\som_grid.m
................................................\..........\som_gui.m
................................................\..........\som_hits.m
................................................\..........\som_ind2cod.m
................................................\..........\som_ind2sub.m
................................................\..........\som_info.m
................................................\..........\som_kmeans.m
................................................\..........\som_kmeanscolor.m
................................................\..........\som_kmeanscolor2.m
................................................\..........\som_label.m
................................................\..........\som_label2num.m
................................................\..........\som_lininit.m
................................................\..........\som_linkage.m
................................................\..........\som_make.m
................................................\..........\som_map_struct.m
................................................\..........\som_mdist.m
................................................\..........\som_modify_dataset.m
................................................\..........\som_neighborhood.m
................................................\..........\som_neighbors.m

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • GP in power system
    利用遗传程序设计建立电力系统的负荷模型,无需像传统方法一样预先确定具体的模型结构,它能根据输入输出数据直接演化出变量间的函数关系,并且能够一次性的同时确定函数的结构形式和参数,使得模型的生成过程趋于智能化、自动化,解决了负荷建模工作中长期困扰的模型辨识问题。(Genetic Programming(GP) is a new evolutionary algorithm based on genetic algorithm,which has self-adaptive,self-organizing,self-learing and other advantages.As a kind of automatic programming technology,it tries to study the computer how to solve the problem according to the objective enviroment automatically without human intervention.)
    2018-03-14 20:39:40下载
    积分:1
  • 基于 JPEG/JPEG2000的医学图像压缩方法
    提出了一种基于 JPEG/JPEG2000相结合的医学图像感兴趣区域压缩方法。该方法对在人为选定 医学图像的感兴趣区域采用无损的 JPEG2000压缩 ,而对其他图像区域则采用高压缩比的 JPEG压缩,较好地解决了医学图像的高压缩比和高质量之间的矛盾。(Based on a combination of JPEG/JPEG2000 region of interest of medical image compression method. The method of artificially selected region of interest of medical images using lossless JPEG2000 compression, and on other image regions using high compression ratio of JPEG compression, a better solution to the medical image and high-quality high-compression ratio between the contradictions.)
    2007-10-07 11:03:36下载
    积分:1
  • classifier
    Classifier in matlab
    2010-07-22 10:37:27下载
    积分:1
  • EGC
    equal gain combining-spatial diversity
    2011-01-30 22:23:36下载
    积分:1
  • classical-spectral-estimation-
    经典谱估计方法的MATLAB分析,主要是周期图法及其改进(MATLAB classical analysis of spectral estimation method, the main improvement is the periodogram and)
    2011-04-28 20:13:58下载
    积分:1
  • Coalitional_Game
    联盟博弈频谱感知,包括融合和分裂算法,本科毕设时用的,看下面的英文文献,是对应的文章中仿真的哈,推荐(coalitional games for distributed collaborative spectrum sensing in cognitive radio network)
    2017-01-16 21:26:26下载
    积分:1
  • HW1bOutageCapacity
    MIMO Outage Capacity
    2010-06-07 18:28:54下载
    积分:1
  • dde
    建立matlab和tracepro的联系,实现自动化操作(Establish the connection between MATLAB and TracePro to realize automatic operation.)
    2021-04-09 17:29:01下载
    积分:1
  • tuoyuan2
    机械臂末端椭圆轨迹规划的matlab程序 (trajectory plan of manipulator by matlab)
    2021-03-05 21:19:31下载
    积分:1
  • Random_Order_N
    随机交织器的matlab实现:通过MC仿真的方法产生随机数(Matlab random interleaver implementation)
    2010-11-21 00:07:53下载
    积分:1
  • 696516资源总数
  • 106425会员总数
  • 12今日下载