登录
首页 » C++ » GrayShow

GrayShow

于 2007-04-16 发布 文件大小:2KB
0 200
下载积分: 1 下载次数: 133

代码说明:

  快速ICA算法,用于盲信号处理,提取信号的独立分量,用于图象识别等(fast algorithm for blind signal processing, signal extraction of independent component for image recognition, etc.)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • videos_in_matlab
    very good document and project.
    2010-12-02 21:41:26下载
    积分:1
  • LVQ
    面对大量的交通参数数据,如何快速建立高效的分类预测模型以尽快地对拥堵状态进行判别是一个重要的问题(Face a lot of traffic parameter data, how to quickly establish an efficient classification model to predict the state as soon as possible to discriminate on the congestion is an important issue)
    2010-08-19 21:43:43下载
    积分:1
  • matlabsimulink
    matlabsimulink通信系统建模与仿真实例分析—源代码(matlabsimulink Communication System Modeling and Simulation Case Study- Source code)
    2010-09-29 16:14:15下载
    积分:1
  • main
    THIS IS THE PROGRAM THAT GIVES CODE FOR DEVLOPING BOTH TYPE OF LPC ..IN A SINGLE PROGRAMME.IT USES MATLAB.YOU CAN RUN IT BY FILE MAIN.M .
    2009-10-29 00:24:15下载
    积分:1
  • Feature_selection_via_GA
    Feature selection by Genetic algorithm for classification
    2015-03-02 02:21:14下载
    积分:1
  • xiaoboyuzhiquzao
    小波阈值降噪的matlab代码 里面有两个程序 一个比较了软硬阈值去噪 另外一个对多层小波分解的阈值去噪做了对比(Wavelet threshold denoising matlab code there are two programs a relatively soft and hard thresholding is another multi-layer wavelet threshold denoising to do a comparison)
    2011-09-15 22:31:04下载
    积分:1
  • RGA_run_polynomial
    This is the real-coded genetic algorithm to run polynomial in order to find parameters.
    2015-02-03 16:25:26下载
    积分:1
  • pcafacerecognition
    基于主成分分析(PCA)的人脸识别系统 利用2D PCA算法求对训练集向量进行降维的降维矩阵,最近邻法测试对测试集识别的精度(pca face recognition)
    2009-03-24 10:32:18下载
    积分:1
  • CMessageFilter
    C-message filter implementation
    2010-10-07 22:21:24下载
    积分:1
  • EMALGORITHM
    In statistics, an expectation-maximization (EM) algorithm is a method for finding maximum likelihood or maximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. EM is an iterative method which alternates between performing an expectation (E) step, which computes the expectation of the log-likelihood evaluated using the current estimate for the latent variables, and a maximization (M) step, which computes parameters maximizing the expected log-likelihood found on the E step. These parameter-estimates are then used to determine the distribution of the latent variables in the next E step.
    2010-12-14 17:04:44下载
    积分:1
  • 696518资源总数
  • 106227会员总数
  • 11今日下载