-
Matlab-PSO
To find and estimate of the best solution and parameter in our problem we can use the evolutionary programming. PSO (particle swarm optimization) is an applicable method to catch this target.
In these files I show the Simple PSO that it can be base of solve complicated problem, the code could run by MATLAB.
- 2013-07-15 01:15:42下载
- 积分:1
-
captv74
code for simulating wsn
- 2013-11-21 03:42:22下载
- 积分:1
-
cwithMatlabonPCA
c++与matlab混合编程,主成分分析示例(the current programs demonstrate the priciple component analysis with matlab and c plus plus)
- 2010-03-14 21:29:36下载
- 积分:1
-
rayleigh
Rayleigh fading channel based on
the Filtered Gaussian Noise method and
r based on the Sum of Sinusoids method(simulation for Rayleigh fading channel
-Plot the channel output for fm
T = 0.01, 0.1 and 0.5 (t/T =
0 ~ 300)
– Plot the channel output autocorrelation for fm
T = 0.01,
0.1 and 1.0 (fm
= 0 ~ 10))
- 2013-01-14 22:51:33下载
- 积分:1
-
Avg_Pitch
average pitch calculation
- 2012-01-27 14:40:58下载
- 积分:1
-
PSO-algorithm--identify
PSO算法的系统辨识,辨识一个锅炉蒸汽水位的传递函数。依据现有的数据,将传递函数辨识为2阶。(PSO algorithm to identify a boiler steam water level transfer function. Based on the existing data, the transfer function is identified as order 2.)
- 2017-05-26 16:46:53下载
- 积分:1
-
Pca-extraction
pca进行特征提取源码,用matlab语言编写,pca即主成分分析(pca source for feature extraction using Matlab language, pca that Principal Component Analysis)
- 2020-12-23 15:19:07下载
- 积分:1
-
ofdm_gito
CMMB标准中OFDM matlab 仿真,学习OFDM入门经典(CMMB OFDM Matlab simulation ,is a typical introduction of OFDM)
- 2010-08-11 17:10:01下载
- 积分:1
-
fs-kfda
Feature scaling for kernel Fisher discriminant analysis using leave-one-out cross validation.
FS-KFDA is a package for implementing feature scaling for kernel fisher discriminant analysis.(Feature scaling for kernel Fisher discrim inant analysis using leave-one-out cross vali dation. FS-KFDA is a package for implementing f eature scaling for kernel fisher discriminant analysis.)
- 2006-11-09 22:47:18下载
- 积分:1
-
Jacobi
Jacobi矩阵一般是坐标变换时用的——这个坐标系的坐标依次对那个坐标系的坐标求偏导数即得Jacobi矩阵。积分时从直角坐标变到球坐标、极坐标肯定要在积分号里乘上Jacobi矩阵的行列式。
若其特征值全为正,则此Jacobi矩阵正定,即它的任何二次型都大于零。并且如果是对称Jacobi矩阵,还可以实相合于一个单位阵。是比较强的条件。矩阵A的特征值是这个关于x的方程的所有根
det(A-xI)=0(Jacobi)
- 2010-12-20 23:19:38下载
- 积分:1