-
DOA_Estimating
DOA估计(雷达来波方向估计)是雷达的重要理论,我提供了阵列信号处理中基于MUSIC算法的DOA估计,和基于最大熵法的DOA估计的MATLAB源代码。都是自己仿真用的。(err)
- 2007-12-27 22:38:40下载
- 积分:1
-
strength
增强学习的相关代码,2012版本以上的matlab可用。(Enhanced learning related code, version 2012 or more available matlab.)
- 2017-01-05 22:36:31下载
- 积分:1
-
bdpca
bdpca face recgnition...............
- 2010-08-24 10:28:25下载
- 积分:1
-
programm
cholesky分解和LU分解的matlab实现。供初学者参考。(cholesky decomposition matlab implementation. Reference for beginners.)
- 2011-05-07 15:38:06下载
- 积分:1
-
Inductionmotor_modeling
SOFT STARTER MODEL FOR THE MATLAB
- 2014-12-23 15:28:58下载
- 积分:1
-
WM
说明: Image Watermarking. It is used to water mark digital images using asymmetric method
- 2010-10-08 08:16:24下载
- 积分:1
-
MTPAtest1
十个关于基本函数测试的函数编程。关于MatLAB的函数编程(the ten function about basemarched try in matlab)
- 2009-04-17 15:24:09下载
- 积分:1
-
Assignment
edge detection using matlab
- 2010-11-24 17:30:18下载
- 积分:1
-
matlab
matlab程序,用来求解线形方程组,以函数的形式给出调用即可(matlab program for solving linear equations, given the form of a function call can)
- 2008-06-18 16:53:00下载
- 积分:1
-
perceptron
感知器感知器算法训练二元线性分类器。结构体数据使用感知器学习规则
找到给定的二分类标签数据超平面。
(PERCEPTRON Perceptron algorithm to train binary linear classifier.
Synopsis:
model = perceptron(data)
model = perceptron(data,options)
model = perceptron(data,options,init_model)
Description:
model = perceptron(data) uses the Perceptron learning rule
to find separating hyperplane from given binary labeled data.
model = perceptron(data,options) specifies stopping condition of
the algorithm in structure options:
.tmax [1x1]... maximal number of iterations.
If tmax==-1 then it only returns index (model.last_update)
of data vector which should be used by the algorithm for updating
the linear rule in the next iteration.
model = perceptron(data,options,init_model) specifies initial model
which must contain:
.W [dim x 1] ... normal vector.
.b [1x1] ... bias of hyperplane.
.t [1x1] (optional) ... iteration number.
Input:
data [struct] Labeled (binary) training data.
.X [dim x num)
- 2011-05-01 18:19:52下载
- 积分:1