登录
首页 » matlab » 7c2f6c56ed6d

7c2f6c56ed6d

于 2011-08-04 发布 文件大小:799KB
0 249
下载积分: 1 下载次数: 26

代码说明:

  一个HMM的Matlab实现方法,可实现孤立词语音识别(Matlab implementation of a HMM methods, an isolated word speech recognition can be achieved)

文件列表:

HMMall
......\HMM
......\...\#fwdback.m#,6896,2006-02-17
......\...\#mhmm_em.m#,5589,2006-02-16
......\...\#README.txt#,550,2005-06-08
......\...\dhmm_em.m,4081,2005-06-08
......\...\dhmm_em_demo.m,687,2003-05-04
......\...\dhmm_em_online.m,2376,2003-05-04
......\...\dhmm_em_online_demo.m,2249,2003-05-04
......\...\dhmm_logprob.m,640,2003-05-04
......\...\dhmm_logprob_brute_force.m,552,2002-05-29
......\...\dhmm_logprob_path.m,448,2002-05-29
......\...\dhmm_sample.m,408,2004-05-31
......\...\dhmm_sample_endstate.m,622,2003-05-04
......\...\fixed_lag_smoother.m,2096,2003-01-22
......\...\fixed_lag_smoother_demo.m,987,2005-06-08
......\...\fwdback.m,6896,2006-02-17
......\...\fwdback.m~,6518,2006-02-16
......\...\fwdback_xi.m,6642,2005-12-08
......\...\fwdprop_backsample.m,1899,2006-02-23
......\...\fwdprop_backsample.m~,1898,2006-02-22
......\...\gausshmm_train_observed.m,1561,2004-02-12
......\...\herbert.txt~,10449,2005-05-12
......\...\mc_sample.m,442,2004-05-24
......\...\mc_sample_endstate.m,711,2003-01-22
......\...\mdp_sample.m,490,2002-05-29
......\...\mhmmParzen_train_observed.m,1203,2004-02-13
......\...\mhmm_em.m,5610,2006-02-16
......\...\mhmm_em.m~,5562,2004-02-07
......\...\mhmm_em_demo.m,1013,2003-05-13
......\...\mhmm_logprob.m,960,2003-05-04
......\...\mhmm_sample.m,1071,2004-05-25
......\...\mk_leftright_transmat.m,248,2002-05-29
......\...\mk_rightleft_transmat.m,249,2002-11-22
......\...\pomdp_sample.m,612,2003-05-04
......\...\publishHMM.m,32,2006-07-10
......\...\README.txt,550,2005-06-08
......\...\README.txt~,817,2004-06-07
......\...\testHMM.m,138,2005-06-08
......\...\transmat_train_observed.m,1245,2004-08-29
......\...\viterbi_path.m,1541,2004-10-22
......\KPMstats
......\........\#histCmpChi2.m#,267,2005-05-03
......\........\beta_sample.m,1955,2005-04-25
......\........\chisquared_histo.m,199,2005-04-25
......\........\chisquared_prob.m,1326,2005-04-25
......\........\chisquared_readme.txt,1389,2005-04-25
......\........\chisquared_table.m,2127,2005-04-25
......\........\clg_Mstep.m,5884,2005-04-25
......\........\clg_Mstep_simple.m,1463,2005-04-25
......\........\clg_prob.m,421,2005-04-25
......\........\condGaussToJoint.m,646,2005-04-25
......\........\condgaussTrainObserved.m,908,2005-04-25
......\........\condgauss_sample.m,351,2005-04-25
......\........\cond_indep_fisher_z.m,3789,2005-04-25
......\........\convertBinaryLabels.m,101,2005-04-25
......\........\cwr_demo.m,3513,2005-04-25
......\........\cwr_em.m,4912,2005-04-25
......\........\cwr_predict.m,1677,2005-04-25
......\........\cwr_prob.m,1011,2005-04-25
......\........\cwr_readme.txt,534,2005-04-25
......\........\cwr_test.m,2436,2005-04-25
......\........\dirichletpdf.m,1049,2005-05-22
......\........\dirichletrnd.m,1049,2005-05-22
......\........\dirichlet_sample.m,582,2005-04-25
......\........\distchck.m,3836,2005-04-25
......\........\eigdec.m,1535,2005-04-25
......\........\est_transmat.m,535,2005-04-25
......\........\fit_paritioned_model_testfn.m,103,2005-04-25
......\........\fit_partitioned_model.m,2290,2005-04-25
......\........\gamma_sample.m,3144,2005-04-25
......\........\gaussian_prob.m,848,2005-04-25
......\........\gaussian_sample.m,659,2005-04-25
......\........\histCmpChi2.m,394,2005-05-03
......\........\histCmpChi2.m~,353,2005-05-03
......\........\KLgauss.m,342,2005-04-25
......\........\linear_regression.m,2038,2005-04-25
......\........\logist2.m,3050,2005-04-25
......\........\logist2Apply.m,365,2005-04-25
......\........\logist2ApplyRegularized.m,91,2005-04-25
......\........\logist2Fit.m,593,2005-04-25
......\........\logist2FitRegularized.m,411,2005-04-25
......\........\logistK.m,7540,2005-04-25
......\........\logistK_eval.m,2372,2005-04-25
......\........\marginalize_gaussian.m,293,2005-04-25
......\........\matrix_normal_pdf.m,346,2005-04-25
......\........\matrix_T_pdf.m,430,2005-04-25
......\........\mc_stat_distrib.m,790,2005-04-25
......\........\mixgauss_classifier_apply.m,534,2005-04-25
......\........\mixgauss_classifier_train.m,1377,2005-04-25
......\........\mixgauss_em.m,2252,2005-04-25
......\........\mixgauss_init.m,1357,2005-04-25
......\........\mixgauss_Mstep.m,3283,2005-04-25
......\........\mixgauss_prob.m,4102,2005-04-25
......\........\mixgauss_prob_test.m,2320,2005-04-25
......\........\mixgauss_sample.m,734,2005-04-25
......\........\mkPolyFvec.m,576,2005-04-25
......\........\mk_unit_norm.m,280,2005-04-25
......\........\multinomial_prob.m,567,2005-04-25
......\........\multinomial_sample.m,577,2005-04-25

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • GMM
    GMM的说话人识别系统,识别效果90 多(GMM speaker recognition system, the recognition effect more than 90 )
    2010-12-23 16:41:23下载
    积分:1
  • MFCC
    在MATLAB中完成对语音的梅尔倒谱系数的提取(Extraction of Mel cepstrum coefficients)
    2017-10-23 21:40:39下载
    积分:1
  • ABSE
    熵值越大则每个符号包含的平均信息量越大。有研究发现,在有噪声的语音信号中,语音信号的熵和噪声信号的熵存在着较大的差异,对噪声信号来说在整个频带内分布相对平坦,熵值小,语音信号集中在某些特定频段内,熵值大。因此利用这个差异可以区分噪音段和语音段。(The greater the entropy is, the greater the average information of each symbol is. It is found that, in noisy speech signals, the entropy of speech signals and the entropy of noise signals are quite different. For noisy signals, the distribution is relatively flat in the whole frequency band, and the entropy value is small. The speech signal is concentrated in some specific frequency bands, and the entropy value is large. So the difference can be used to distinguish the noise segment and the speech segment.)
    2020-11-02 21:29:54下载
    积分:1
  • chapter2-low-bit-rate-speech-coding
    Chapter 2 Low Bit-Rate Speech Coding In this chapter an overview is given of speech coding techniques at several bit rates. Most of them use Linear Prediction. This overview is not meant to be complete its purpose is to make the reader somewhat familiar with Linear Predictive Coding which is necessary for a proper understanding of later chapters. Section 2.1 treats the subject of quantisation and coding. In section 2.2 a description of speech production and speech sounds is given. Coders based on linear prediction can be considered as being based on a simple speech production model. This model is explained in section 2.3. Section 2.4 describes various speech coding algorithms and techniques. Section 2.5 briefly describes some measures for the quality of coded speech.(In this chapter an overview is given of speech coding techniques at several bit rates. Most of them use Linear Prediction. This overview is not meant to be complete its purpose is to make the reader somewhat familiar with Linear Predictive Coding which is necessary for a proper understanding of later chapters. Section 2.1 treats the subject of quantisation and coding. In section 2.2 a description of speech production and speech sounds is given. Coders based on linear prediction can be considered as being based on a simple speech production model. This model is explained in section 2.3. Section 2.4 describes various speech coding algorithms and techniques. Section 2.5 briefly describes some measures for the quality of coded speech.)
    2010-07-02 19:42:42下载
    积分:1
  • MUSIC
    基于麦克风阵列的声源定位一维music算法源代码(Based on the microphone array beamformer one-dimensional music algorithm source code)
    2021-04-13 23:18:55下载
    积分:1
  • The-FIR-filter-design
    (附带有文档,文档中有方案,有程序有结果,设计完后对一段语音进行处理)给定滤波器的规一化性能指标(参考指标,实际中依据每个同学所叠加噪声情况而定)通带截止频率wp=0.25*pi。 采用窗函数法设计低通、高通、带通型FIR滤波器,对叠加噪声前后的语音信号进行滤波处理,绘出滤波器的频域响应,绘出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化;在相同的性能指标下比较各方法的滤波效果,并从理论上进行分析((With the document, document, program, program results, the design after a voice) to set the filter rules of performance indicators (reference, practice, each student adding noise may be) passband cutoff frequency wp = 0.25* pi. Window function method to design low pass, high pass, band-pass FIR filter, filtering the voice signal before and after adding noise, draw the filter frequency response plot the time-domain waveform and spectrum of the filtered signal, and filtering the signal before and after comparison and analysis of signal changes the filtering effect of the various methods in the same performance indicators, and the theoretical analysis)
    2021-01-15 00:28:46下载
    积分:1
  • 4999929
    C#的WinForm项目的dataGridView控件的CheckBox(The CheckBox of the dataGridView control for the WinForm project of the C #)
    2019-05-09 12:25:41下载
    积分:1
  • chirplet_analasis
    针对信号自适应chirplet分解未知参数多、实现起来比较困难的特点,文献[1]提出了一种新的chirplet分解快速算法。该算法利用计算信号的二次相位函数,得到其能量分布集中于信号的调频率曲线上的结论,此时通过谱峰检测可同时获得chirplet调频率、时间中心和幅度的估计;然后通过解线性调频技术获得其初始频率和宽度的估计,仿真结果验证了本文算法的有效性。(this code includs one method for chirplet analasis,that is used in voice and ultra-wave analasys,etc.)
    2009-03-09 10:23:45下载
    积分:1
  • source-localization
    本文介绍了基于麦克风阵列的声源定位算法,给初学者有很大的帮助(This article describes the microphone array based sound source localization algorithm, a great help for beginners)
    2020-10-12 22:27:32下载
    积分:1
  • mispecgramm
    一个能实现对语音信号分帧的STFT和ISTFT的函数(Realize a sub-frame of the speech signal and the STFT of the function ISTFT)
    2007-10-23 22:52:09下载
    积分:1
  • 696518资源总数
  • 106161会员总数
  • 5今日下载