-
Fibonacci_series
1.讨论数列的变化规律。
2.讨论调和级数的变化规律。(1. Discuss the changes of the number of columns.
2. To discuss the changes of harmonic progression.)
- 2009-12-22 16:27:25下载
- 积分:1
-
report_FFT_2010_10_31
说明: 一个关于傅里叶变换的学习课件,本人自己制作,课题组内部学习使用。(A study on the Fourier transform of the courseware, I produce their own, learning to use the internal research group.)
- 2011-04-06 00:58:49下载
- 积分:1
-
Quiver_Plot_2D
quiver plot in matlab
- 2012-04-24 16:47:16下载
- 积分:1
-
H_J_two_dim
偏微分方程中利用数值方法求解Hamilton-Jacobi方程 二维情形 (Numerical calculation of Hamilton-Jacobi equation )
- 2011-10-17 15:45:50下载
- 积分:1
-
Gabor_Image_Features
Computation of Gabor Features - Mean Squared Energy, Mean Amplitude
- 2015-04-02 01:58:27下载
- 积分:1
-
BTbartlett
利用BT谱估计器估计信号频率谱的MATLAB仿真程序(BT spectrum estimator estimates the signal frequency spectrum MATLAB simulation program)
- 2012-11-06 19:59:22下载
- 积分:1
-
yuan
原对偶内点法求解各种非线性方程组,以及非线性优化问题(Primal-dual interior point method for solving nonlinear equations and nonlinear optimization problem)
- 2015-10-09 21:44:28下载
- 积分:1
-
GaussianPyramid
Gaussian Pyramid Matlab
- 2010-02-25 02:50:19下载
- 积分:1
-
lxl
这是个关于瑞利信道仿真的程序,请高手指点(This is a letter of Rayleigh Road simulation program, the guidance of a master)
- 2007-05-07 11:32:49下载
- 积分:1
-
SCSToolboxV2
将压缩感知用于谱估计中,根据论文谱压缩感知的一些程序(Compressive sensing (CS) is a new approach to simultaneous sensing and compression of sparse
and compressible signals based on randomized dimensionality reduction. To recover a signal from its
compressive measurements, standard CS algorithms seek the sparsest signal in some discrete basis or
frame that agrees with the measurements. A great many applications feature smooth or modulated signals
that are frequency sparse and can be modeled as a superposition of a small number of sinusoids.
Unfortunately, such signals are only sparse in the discrete Fourier transform (DFT) domain when the
sinusoid frequencies live precisely at the center of the DFT bins. When this is not the case, CS recovery
performance degrades significantly. In this paper, we introduce a suite of spectral CS (SCS) recovery
algorithms for arbitrary frequency sparse signals. The key ingredients are an over-sampled DFT frame, a
signal model that inhibits closely spaced sinusoids, and classical sinusoid parameter e)
- 2012-06-29 10:10:42下载
- 积分:1