登录
首页 » matlab » itti-koch-1998

itti-koch-1998

于 2011-08-09 发布 文件大小:1747KB
0 214
下载积分: 1 下载次数: 52

代码说明:

  有关视觉注意机制的文章,英文原文,itti(Articles on visual attention mechanisms, the English original, itti)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • matlab(source_code)
    matlab 数字图像处理源码,本代码包括GUI的设计,以及数字图像中的小波变换等内容(Digital Image Processing in matlab)
    2009-12-31 16:33:05下载
    积分:1
  • Knapsack_dynamic_rus
    Knapsack Problem. Russian version. Dynamic programming.
    2010-05-11 13:12:53下载
    积分:1
  • tcoug
    Synopsys® Timing Constraints and Optimization User Guide
    2014-08-23 17:37:56下载
    积分:1
  • Deskt221op
    matlab毕业编程【谷速软件】超球面 可以作为参考使用 在学习的过程中(Graduation matlab software programming speed [Valley] hypersphere can use as a reference in the process of learning)
    2014-12-17 23:24:45下载
    积分:1
  • DV_Hop_modify
    针对基本无线传感器网络DV-Hop定位算法中,计算平均跳距时产生偏小误差的原因,提出了基于平均跳距修正的DV-Hop算法。改进算法中,引入信标节点个数比例、所有信标节点平均跳距的最大值以及所有信标节点平均跳距的平均值三个因子,并采用它们对平均跳距进行修正。通过Matlab软件对算法进行仿真验证,结果表明,改进后的 DV-Hop 算法有效降低了未知节点的定位误差,是一种可行的无线传感器网络节点定位解决方案。(DV-Hop localization algorithm for wireless sensor networks, we calculate the average hop distance small error of reasons, raised the DV-Hop algorithm based on the average hop distance correction. Improved algorithm, the proportion of the number of nodes, the introduction of beacons, the beacon node average maximum jump distance as well as all the beacon nodes average jump from the average of three factors, and their average hop distance correction. Matlab software simulation results show that the improved DV-Hop algorithm effectively reduce the unknown node positioning error, the solution is a viable wireless sensor network node positioning algorithm.)
    2021-05-15 22:30:07下载
    积分:1
  • waves.m
    WAVE propagation analysis
    2011-12-10 08:41:13下载
    积分:1
  • VB___MATLAB
    通过VB调用MATLAB实现图形和界面的结合(MATLAB realize through the VB calls the combination of graphics and interface)
    2008-05-07 12:07:51下载
    积分:1
  • Diagram-Ray
    Calculation of radiation pattern
    2013-03-12 21:50:06下载
    积分:1
  • hysthresh
    Edge detection result should be enhanced using linear method like Median filter to remove the garbage around the pupil to gain clear pupil to determine perfect centre. Get the centre of the pupil by counting the number of black pixels (zero value) of each column and row. Then get each row and column that has the maximum number of these black pixels. Then determine the center by simple calculation according to the image coordinate to set it correct on the image, consequently we can determine the radius of the pupil. Thus we can find the pupillary boundary (inner). A similar procedure is extended by using a coarse scale to locate the outer boundary (limbus) which can be apparent by using the mid-point algorithms of circle and ellipse.
    2011-11-18 02:01:43下载
    积分:1
  • Multivariable-Frequency-Domain-Toolbox
    Multivariable Frequency Domain Toolbox
    2013-12-04 01:37:16下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载