登录
首页 » matlab » 13246857451

13246857451

于 2021-01-09 发布 文件大小:64KB
0 142
下载积分: 1 下载次数: 215

代码说明:

  多用户MIMO预编码技术:块对角化BD,分别采用SVD技术,最大似然检测,最小均方误差检测的误码率性能仿真代码。里面有代码,仿真图等。(Multi-user MIMO precoding techniques: block diagonalization BD, respectively, using the SVD technique, maximum likelihood detection, the minimum mean square error detection BER performance simulation code. There are code, simulation maps.)

文件列表:

多用户mimo预编码技术BD仿真
..........................\L=1_SVD_{6,(2,2,2)_of_BD
..........................\..........................\BER.mat,209,2013-04-17
..........................\..........................\BLOCKDIAGONALIZITION.m,1969,2013-04-17
..........................\..........................\Demodulation.m,1375,2013-04-17
..........................\..........................\error2.mat,184,2013-04-17
..........................\..........................\Modulator.m,1677,2013-04-17
..........................\..........................\READ me.txt,27,2013-04-17
..........................\..........................\SVD.m,308,2013-04-17
..........................\..........................\Svd检测.fig,2997,2013-04-17
..........................\L=1_SVD_{7,(2,2,2)}_of_BD
..........................\.............................\BER.mat,196,2013-04-17
..........................\.............................\BLOCKDIAGONALIZITION.m,1974,2013-04-17
..........................\.............................\Demodulation.m,1375,2013-04-17
..........................\.............................\error1.mat,181,2013-04-17
..........................\.............................\Modulator.m,1677,2013-04-17
..........................\.............................\READ me.txt,29,2013-04-17
..........................\.............................\SVD.m,308,2013-04-17
..........................\.............................\svd解码.fig,2892,2013-04-17
..........................\L=1_SVD_(2,2)_of_BD
..........................\......................\BER.mat,215,2013-04-17
..........................\......................\BLOCKDIAGONALIZITION.m,989,2013-04-17
..........................\......................\Demodulation.m,1375,2013-04-17
..........................\......................\error.mat,182,2013-04-17
..........................\......................\Modulator.m,1677,2013-04-17
..........................\......................\READ me.txt,50,2013-04-17
..........................\......................\SVD.m,308,2013-04-17
..........................\......................\svd检测.fig,2990,2013-04-17
..........................\L=1_SVD_(3,2)_of_BD
..........................\......................\BER.mat,215,2013-04-17
..........................\......................\BLOCKDIAGONALIZITION.m,1023,2013-04-19
..........................\......................\Demodulation.m,1375,2013-04-17
..........................\......................\error.mat,180,2013-04-17
..........................\......................\Modulator.m,1677,2013-04-17
..........................\......................\READ me.txt,50,2013-04-17
..........................\......................\SVD.fig,2925,2013-04-17
..........................\......................\SVD.m,308,2013-04-17
..........................\L=2_ML_{6,(2,2,2)}_BD
..........................\.........................\BER1.mat,216,2013-04-17
..........................\.........................\BLOCKDIAGONALIZITION.m,2489,2013-04-17
..........................\.........................\Demodulation.m,1375,2013-04-17
..........................\.........................\error1.mat,185,2013-04-17
..........................\.........................\ML.fig,2960,2013-04-17
..........................\.........................\Modulator.m,1677,2013-04-17
..........................\.........................\READ me.txt,38,2013-04-17
..........................\.........................\SVD.m,308,2013-04-17
..........................\L=2_ML_(2,2)_of_BD
..........................\.....................\BER.mat,220,2013-04-17
..........................\.....................\BLOCKDIAGONALIZITION.m,1222,2013-04-17
..........................\.....................\Demodulation.m,1375,2013-04-17
..........................\.....................\error.mat,191,2013-04-17
..........................\.....................\ML.fig,2923,2013-04-17
..........................\.....................\Modulator.m,1677,2013-04-17
..........................\.....................\READ me.txt,41,2013-04-17
..........................\.....................\SVD.m,308,2013-04-17
..........................\L=2_MMSE_{6,(2,2,2)}_BD
..........................\...........................\BER1.mat,216,2013-04-17
..........................\...........................\BLOCKDIAGONALIZITION.m,2096,2013-04-17
..........................\...........................\Demodulation.m,1375,2013-04-17
..........................\...........................\error1.mat,5062,2013-04-17
..........................\...........................\MMSE.fig,2985,2013-04-17
..........................\...........................\Modulator.m,1677,2013-04-17
..........................\...........................\READ me.txt,52,2013-04-17
..........................\...........................\SVD.m,308,2013-04-17
..........................\L=2_MMSE_(2,2)_of_BD
..........................\.......................\BER.mat,221,2013-04-17
..........................\.......................\BLOCKDIAGONALIZITION.m,1090,2013-04-17
..........................\.......................\Demodulation.m,1375,2013-04-17
..........................\.......................\error.mat,192,2013-04-17
..........................\.......................\mmes.fig,3011,2013-04-17
..........................\.......................\Modulator.m,1677,2013-04-17
..........................\.......................\qpskdemod.m,443,2013-04-17
..........................\.......................\qpskmod.m,428,2013-04-17
..........................\.......................\READ me.txt,50,2013-04-17
..........................\.......................\SVD.m,308,2013-04-17

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • getmswpfeat
    matlab vide the examined window into cells (e.g. 16x16 pixels for each cell). For each pixel in a cell, compare the pixel to each of its 8 neighbors (on its left-top, left-middle, left-bottom, right-top, etc.). Follow the pixels along a circle, i.e. clockwise or counter-clockwise. Where the center pixel s value is greater than the neighbor s value, write 1 . Otherwise, write 0 . This gives an 8-digit binary number (which is usually converted to decimal for convenie
    2014-11-27 18:57:07下载
    积分:1
  • Road11
    求最短路问题,matlab程序可运行,还有word详细讲解最优截断切割(Seeking the shortest path problem, matlab program can be run, as well as the word explain in detail the optimal cut-off cutting)
    2013-04-26 14:39:38下载
    积分:1
  • eemd1
    亲测真正可以运行的eemd,可用来进行分解,进而得到imf(it is the eemd which could run actually.welcome to download.)
    2015-04-05 16:13:37下载
    积分:1
  • matlabsuanfadaquan
    说明:  matlab语言的算法大全,有插值,函数逼近,数值积分等等算法。(Guinness algorithm matlab language, there are interpolation, function approximation, numerical integration algorithm and so on.)
    2009-07-26 11:10:06下载
    积分:1
  • Manalo--Martin-Final-Reports
    simple matlab documents for beginners
    2012-03-29 15:55:49下载
    积分:1
  • channel_36.873
    3GPP 36.873信道建模,用Python编写(3GPP 36.873 channel modeling, written in Python)
    2018-06-28 22:29:01下载
    积分:1
  • matlab65
    matlab辅助小波分析及应用,对于研究信号的小波变换很有帮助。(matlab wavelet analysis and application )
    2009-05-04 11:32:49下载
    积分:1
  • eof
    EOF(经验正交函数分解)可以进行时空分离,同时也可以分析周期规律(EOF (empirical orthogonal function decomposition) can be temporal separation, but also can analyze cycle regularity)
    2013-11-29 22:32:55下载
    积分:1
  • ZDT4
    为了有效地应用遗传算法解决 鲁棒控制系统设计问题,将遗传算法与局部优化方法相结合,提出了基于降维扫描方法的自适应多目标遗传算法(DRSA-MOGA)。通过引入适应度函数标准化方法、基于最优Pareto解集搜索的降维扫描方法和适应度函数自适应调整方法,提高了算法的全局优化性能和局部搜索能力。仿真结果表明,DRSA-MOGA算法在不损失解的均匀度的情况下可以达到很高的逼近度(For effective application of genetic algorithms to solve robust control system design problems, genetic algorithms and local optimization method, based on reduced-order adaptive scanning method multi-objective genetic algorithm (DRSA-MOGA). Fitness function through the introduction of standardized methods, based on the Pareto optimal solution set of search methods and dimensionality reduction scan fitness function adaptive adjustment method, the algorithm improve the performance of global optimization and local search capabilities. The simulation results show that, DRSA-MOGA algorithm solution without loss of uniformity can be achieved under a high degree of approximation)
    2007-11-08 01:43:25下载
    积分:1
  • guanghuabi
    光滑比的检验,用于灰色预测模型的建立过程,如果数据达不到要求,就不能用来预测(to exam it whether smooth or not)
    2014-08-15 14:56:04下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载