登录
首页 » matlab » linmember

linmember

于 2021-01-06 发布 文件大小:212KB
0 230
下载积分: 1 下载次数: 71

代码说明:

  本代码解决的是在线性高斯环境下的目标跟踪,给出的是势均衡多目标多伯努利滤波器的高斯混合实现,本代码能够正常运行。( This code is to solve linear Gaussian target tracking environment, Gaussian mixture is given multi-objective multi-bonuli potential equalization filter implementation, this code to run properly.)

文件列表:

linmember
.........\example0_posn_cv
.........\................\declare_problem.m,2748,2014-03-18
.........\................\sigfab.m,1003,2006-12-30
.........\example1_posn_cv
.........\................\calc_totalgaus.m,148,2007-04-27
.........\................\declare_problem.m,3333,2007-07-02
.........\................\extract_tracks.m,639,2007-04-13
.........\................\gaus_merge.m,1226,2007-07-17
.........\................\gen_observation.m,227,2006-12-30
.........\................\kalman_predict.m,111,2006-12-30
.........\................\kalman_update.m,547,2007-04-21
.........\................\make_cdnstack.m,302,2007-04-27
.........\................\memberfilter_lin.m,10183,2007-07-11
.........\................\paperplot_all.m,3398,2007-06-10
.........\................\plotsim1cmp.m,3862,2007-07-04
.........\................\plotsim1ind.m,3571,2007-07-03
.........\................\plotsim2cmp.m,3623,2007-07-04
.........\................\plotsim2ind.m,3529,2007-07-03
.........\................\plottracks.m,937,2007-09-08
.........\................\predictcheck.m,376,2007-04-19
.........\................\rs_norm.mat,208,2006-12-30
.........\................\rs_unif.mat,472,2006-12-30
.........\................\sigfab.m,1589,2007-06-07
.........\................\siggen_sameX.m,430,2007-04-13
.........\................\sim1m_alt.m,3779,2007-11-02
.........\................\sim1m_cstats.m,1647,2007-08-17
.........\................\sim1m_mem.m,3745,2007-11-02
.........\................\sim1m_metric.m,7178,2007-09-26
.........\................\sim1m_metric_altden.m,6991,2007-11-03
.........\................\sim1m_org.m,3752,2007-07-06
.........\................\sim2m_cstats.m,1622,2007-08-17
.........\................\sim2m_mem.m,3755,2007-07-06
.........\................\sim2m_metric.m,6571,2007-09-26
.........\................\sim2m_org.m,3762,2007-07-06
.........\................\sim_getcoords.m,238,2007-09-12
.........\................\sumesf.m,145,2006-12-30
.........\................\updatecheck.m,367,2007-04-19
.........\................\writehatdata.m,1103,2007-07-02
.........\................\writehatdata2.m,1337,2007-07-02
.........\example1_posn_cv_special
.........\........................\calc_totalgaus.m,148,2007-04-27
.........\........................\declare_problem.m,3726,2014-05-21
.........\........................\extract_tracks.m,639,2007-04-13
.........\........................\gaus_merge.m,1226,2007-07-17
.........\........................\gen_observation.m,236,2014-05-22
.........\........................\kalman_predict.m,111,2006-12-30
.........\........................\make_cdnstack.m,302,2007-04-27
.........\........................\memberfilter_lin.m,11316,2014-05-24
.........\........................\memberfilter_lin_special.m,10168,2007-07-15
.........\........................\model.bar_B,0,2014-05-21
.........\........................\paperplot_all.m,3398,2007-06-10
.........\........................\predictcheck.m,376,2007-04-19
.........\........................\rs_norm.mat,208,2006-12-30
.........\........................\rs_unif.mat,472,2006-12-30
.........\........................\sigfab.m,1645,2014-05-19
.........\........................\siggen_sameX.m,484,2014-05-22
.........\........................\sim1cmp.mat,41508,2007-05-31
.........\........................\sim1mem.mat,34261,2007-05-31
.........\........................\sim1m_mem.m,3729,2007-07-15
.........\........................\sim1m_metric_special.m,4921,2007-07-18
.........\........................\sim1m_special.m,3737,2007-07-15
.........\........................\sumesf.m,145,2006-12-30
.........\........................\updatecheck.m,367,2007-04-19
.........\example2_posn_cv
.........\................\calc_totalgaus.m,148,2007-04-27
.........\................\declare_problem.m,2403,2007-07-17
.........\................\make_cdnstack.m,302,2007-04-27
.........\................\plotsim1cmp.m,3862,2007-07-04
.........\................\plotsim1ind.m,3571,2007-07-03
.........\................\plotsim2cmp.m,3623,2007-07-04
.........\................\plotsim2ind.m,3529,2007-07-03
.........\................\rs_norm.mat,208,2006-12-30
.........\................\rs_unif.mat,472,2006-12-30
.........\................\sigfab.m,1754,2006-12-30
.........\................\sim1m_cstats.m,1647,2007-08-15
.........\................\sim1m_mem.m,3745,2007-07-06
.........\................\sim1m_org.m,3752,2007-07-06
.........\................\sim2m_cstats.m,1622,2007-08-17
.........\................\sim2m_mem.m,3755,2007-07-06
.........\................\sim2m_org.m,3762,2007-07-06
.........\example4a_posn_cv
.........\.................\calc_totalgaus.m,148,2007-04-27
.........\.................\declare_problem.m,2298,2007-07-17
.........\.................\make_cdnstack.m,302,2007-04-27
.........\.................\plotsim1cmp.m,3862,2007-07-04
.........\.................\plotsim1ind.m,3571,2007-07-03
.........\.................\plotsim2cmp.m,3623,2007-07-04
.........\.................\plotsim2ind.m,3529,2007-07-03
.........\.................\rs_norm.mat,208,2006-12-30
.........\.................\rs_unif.mat,472,2006-12-30
.........\.................\sigfab.m,847,2007-04-25
.........\.................\sim1m_cstats.m,1647,2007-08-15
.........\.................\sim1m_mem.m,3745,2007-07-06
.........\.................\sim1m_org.m,3752,2007-07-06
.........\.................\sim2m_cstats.m,1622,2007-08-17
.........\.................\sim2m_mem.m,3755,2007-07-06
.........\.................\sim2m_org.m,3762,2007-07-06
.........\example4a_sm
.........\............\calc_totalgaus.m,148,2007-04-27

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • image-matching
    用matlab实现的图像匹配,配有目标图片和程序说明(Implemented with the image matching matlab, with a target picture and description of the procedures)
    2010-10-13 13:16:20下载
    积分:1
  • shot
    图像截图完成一个简单的多媒体应用程序,包含:多媒体信息的获取、处理、展现三个基本过程。(this is a snapshot code)
    2014-10-16 00:15:49下载
    积分:1
  • GA_SVM
    svm参数的优化算法——遗传算法,在使用SVM时用于优化核函数的两个参数(GA SVM)
    2020-08-04 18:08:37下载
    积分:1
  • STXJC
    采用支持向量机对水天线进行检测和标记。效果还不错喔。(The water antenna is detected and marked by support vector machine.)
    2020-06-20 09:40:01下载
    积分:1
  • otsu
    OTSU Gray-level image segmentation using Otsu s method. Iseg = OTSU(I,n) computes a segmented image (Iseg) containing n classes by means of Otsu s n-thresholding method (Otsu N, A Threshold Selection Method from Gray-Level Histograms, IEEE Trans. Syst. Man Cybern. 9:62-66 1979). Thresholds are computed to maximize a separability criterion of the resultant classes in gray levels. OTSU(I) is equivalent to OTSU(I,2). By default, n=2 and the corresponding Iseg is therefore a binary image. The pixel values for Iseg are [0 1] if n=2, [0 0.5 1] if n=3, [0 0.333 0.666 1] if n=4, ... [Iseg,sep] = OTSU(I,n) returns the value (sep) of the separability criterion within the range [0 1]. Zero is obtained only with images having less than n gray level, whereas one (optimal value) is obtained only with n-valued images.
    2009-03-17 17:57:51下载
    积分:1
  • BPSK-AWGN
    基于matlab的BPSK-AWGN编程(hbfghgfhngfhgfjnhgjhg)
    2009-11-13 16:18:24下载
    积分:1
  • matlab2
    matlab应用程序百例之界面设计篇,适合初学者参考(matlab application interface design, 100 cases of articles, suitable for beginners reference)
    2010-03-09 19:48:08下载
    积分:1
  • area
    说明:  采用区域生长法和门限法对头像进行分割,程序中代码全由自己编写,直接运行main函数即可(A regional growth method and the threshold segmentation method picture, the program code is written entirely by themselves, can be directly run the main function)
    2010-04-28 23:08:16下载
    积分:1
  • seismic-plot
    地震剖面图的显示程序,使用matlab编写 !(Seismic profile display program, the use of matlab !)
    2013-01-10 09:50:46下载
    积分:1
  • cmeans
    人工智能中比较经典的c-means算法的实现。在MATLAB中,数据使用矩阵存储比vc中好实现!(Comparison of artificial intelligence in the classic c-means algorithm. In MATLAB, the use of data storage than the vc matrix of the realization of good!)
    2007-11-23 08:30:36下载
    积分:1
  • 696518资源总数
  • 106010会员总数
  • 4今日下载