登录
首页 » matlab » attachments

attachments

于 2013-08-01 发布 文件大小:1KB
0 188
下载积分: 1 下载次数: 4

代码说明:

  This file contains optimization codes

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • mpeg
    this is matlab program for frame compression
    2009-04-18 13:14:41下载
    积分:1
  • adwa
    说明:  数值计算课后答案的解析,很有用的而且对上机超值(Numerical Analysis of after-school answer, very useful but on the machine value)
    2010-04-15 15:11:38下载
    积分:1
  • _AOSLevelsetSegmentationToolbox
    这是一个matlab的源码。代码实现了图像的level set 分割方法(This is a matlab source. Code to achieve the level set image segmentation method)
    2009-11-12 10:51:57下载
    积分:1
  • KF-simple-scale
    说明:  卡尔曼滤波简单例程,一维情况。An Introduction to Kalman Filter中的例子。(Kalman filter is simple routines, one-dimensional situation. An Introduction to Kalman Filter in the example.)
    2011-03-02 16:41:37下载
    积分:1
  • Turbo
    关于turbo码及其在3G中的应用,对初学者有帮助(about Tubro and its application in 3G)
    2010-05-06 18:57:46下载
    积分:1
  • sinusMatlab
    the graphs where you can find how the function looks like - sinus
    2013-11-30 17:37:59下载
    积分:1
  • fixedScatterFreq
    移动通信MIMO信道建模中参数设置时用到的小程序2。(Small program used in mobile communication MIMO channel modeling parameters set.)
    2012-11-05 21:13:42下载
    积分:1
  • digital_signal_and_MATLAB_command
    matlab 在信号处理中的应用。该文档系统总结了信号处理中的matlab命令的使用方式以及实现处理的matlab程序。(matlab in signal processing applications. This document summarizes the signal processing system in the matlab command usage and the achievement of processing matlab program.)
    2009-10-07 17:12:17下载
    积分:1
  • lab02
    在MATLAB实现的用C实现的KNN算法,输入训练数据文件,和test文件,进行预测分类,并且可以与真实情况比较测试预测正确百分比(Implemented in MATLAB KNN algorithm implemented in C, the input training data file, and test files, to predict the classification and testing with the real situation is more correct percentage of predicted)
    2011-06-16 11:20:09下载
    积分:1
  • face_detection
    本文应用SMQT和 SPLIT UP SNOW 分类器来完成对人脸的检测。(The purpose of this paper is threefold: firstly, the local Successive Mean Quantization Transform features are proposed for illumination and sensor insensitive operation in object recognition. Secondly, a split up Sparse Network of Winnows is presented to speed up the original classifier. Finally, the features and classifier are combined for the task of frontal face detection. Detection results are presented for the MIT+CMU and the BioID databases. With regard to this face detector, the Receiver Operation Characteristics curve for the BioID database yields the best published result. The result for the CMU+MIT database is comparable to state-of-the-art face detectors.)
    2013-03-18 17:14:19下载
    积分:1
  • 696518资源总数
  • 105466会员总数
  • 24今日下载