-
lr_lmmse_estimation
说明: 基于导频的ofdm信道估计,采用线性MMSE算法。(Pilot-based channel estimation ofdm using the linear MMSE algorithm.)
- 2011-04-11 20:20:30下载
- 积分:1
-
HeffronPhillips
Heffron-philips model for synchronous generators
- 2015-03-10 22:25:23下载
- 积分:1
-
digital_filtering
用SIMULINK搭建的数字滤波仿真程序,编译后而直接用在DSP上!(The digital filter structures using SIMULINK simulation program, compiled directly used in the DSP,!)
- 2010-01-10 12:25:12下载
- 积分:1
-
fishers-linear-discriminant
THIS IS FISHER LINEAR DISCRIMINANT MATLAB CODE
- 2015-04-08 03:23:34下载
- 积分:1
-
Automata_Maze
implementation Games Maze by Automata - Followers wall - mice algorithm
- 2014-01-31 01:13:08下载
- 积分:1
-
gbp
Gaussian belief propagation code in matlab.
- 2009-01-01 22:50:31下载
- 积分:1
-
fxzxec
非线性方程组的一般解法,matlab用~(FXZXEC( Property , Value ,...) creates a new FXZXEC or raises the existing singleton.Starting from the left, property value pairs are
applied to the GUI before fxzxec_OpeningFunction gets called. An unrecognized property name or invalid value makes property application stop. All inputs are passed to fxzxec_OpeningFcn via varargin.)
- 2009-10-13 11:32:19下载
- 积分:1
-
FuzzyPSO
基于模糊规则的pso算法,用MATLAB编写的,绝对可用(Pso algorithm based on fuzzy rules, written using MATLAB, absolutely free)
- 2010-09-20 17:47:44下载
- 积分:1
-
kinematics_library_updated2
这次提交包含简单的和直接的职能配置和情节机械臂运动学变换矩阵的计算着。用户只需指定要生署参数矩阵(在Craig的机器人学导论书定义的标准)
该文件包含5个功能和1例。
随意修改补充和完善的代码。(This submission consists of simple and straight forward functions that plots robotic arm configurations and computes forward kinematics transformation matrices. The user has to simply specify the DH parameter matrix (the standard defined in craig s Introduction to Robotics book)
The file contains 5 functions and 1 example.
Feel free to modify add and improve on the code.)
- 2011-05-23 10:45:15下载
- 积分:1
-
fractal-use
分形的练习一
①Koch曲线
用复数的方法来迭代Koch曲线
clear i 防止i被重新赋值
A=[0 1] 初始A是连接(0,0)与(1,0)的线段
t=exp(i*pi/3)
n=2 n是迭代次数
for j=0:n
A=A/3 a=ones(1,2*4^j)
A=[A (t*A+a/3) (A/t+(1/2+sqrt(3)/6*i)*a) A+2/3*a]
end
plot(real(A),imag(A))
axis([0 1 -0.1 0.8])
②Sierpinski三角形
A=[0 1 0.5 0 0 1] 初始化A
n=3 迭代次数
for i=1:n
A=A/2 b=zeros(1,3^i) c=ones(1,3^i)/2
A=[A A+[c b] A+[c/2 c]]
end
for i=1:3^n
patch(A(1,3*i-2:3*i),A(2,3*i-2:3*i), b ) patch填充函数
end
(Fractal
Exercise One
The ① Koch curve
Plural iteration Koch curve
clear i to prevent i is reassigned
A = [0 1] initial A is a connection (0,0) and (1,0) of the segments
t = exp (i* pi/3)
n = 2 n is the number of iterations
for j = 0: n
A = A/3 a = ones (1,2* 4 ^ j)
A = [A (t* A+ a/3) (A/t+ (1/2+ sqrt (3)/6* i)* a) A+2/3* a]
end
plot (real (A), imag (A))
axis ([0 1-0.1 0.8])
② Sierpinski triangle
A = [0 1 0.5 0 0 1] initialized A
n = 3 the number of iterations.
for i = 1: n
A = A/2 b = zeros (1,3 ^ i) c = ones (1,3 ^ i)/2
A = [A A+ [c b] A+ [c/2 c]]
end
for i = 1:3 ^ n
patch (A (1,3* i-2: 3* i), A (2,3* i-2: 3* i), b ) patch filled function
end)
- 2013-03-02 10:03:09下载
- 积分:1