-
kpss
KPSS Function - matlab - useful econometrics tool
- 2014-01-04 02:15:58下载
- 积分:1
-
Robot
jx Robot源码,需要的可以看看,互相学习(jx Robot source, need to look at)
- 2014-02-20 12:47:50下载
- 积分:1
-
matlab蚁群算法工具箱matlab蚁群算法工具箱源代码
说明: 采用matlab编程实现蚁群算法工具箱,次此程序为matlab蚁群算法工具箱的源代码(The ant colony algorithm toolbox is realized by MATLAB programming, and the source code of the MATLAB ant colony algorithm toolbox is the next.)
- 2019-02-16 14:52:14下载
- 积分:1
-
waidianfa
说明: 用外点法计算电力系统计算最优潮流,以三机九节点为例,证明了程序的可运行性。(The external point method is used to calculate the optimal power flow of a power system, and the program is proved to be operational by taking three machines and nine nodes as an example.)
- 2020-11-07 16:28:32下载
- 积分:1
-
BoxDimension_TS
该函数用来计算时间序列的盒维数
具体内容说明在程序中标出(The function used to calculate the time series dimension of the boxes indicate the specific content of the successful bidder in the process of)
- 2008-02-29 15:37:39下载
- 积分:1
-
chandan1
generation of random nodes for wsn
- 2011-02-14 19:33:29下载
- 积分:1
-
2_doc
说明: matlab软件的基础知识一,关于交互式的命令行的使用方式和M-文件的使用方式!(a basic knowledge of matlab, the command line on the interactive use of M-files and use!)
- 2009-07-27 21:13:12下载
- 积分:1
-
cos--sin
t - time series
y - value of series at time t
w - cycle length, defined by user based on prior knowledge of time
series
alpha - type I error used for cofidence interval calculations. Usually
set to be 0.05 which corresponds with 95 cofidence intervals(t- time series
y- value of series at time t
w- cycle length, defined by user based on prior knowledge of time
series
alpha- type I error used for cofidence interval calculations. Usually
set to be 0.05 which corresponds with 95 cofidence intervals)
- 2015-01-24 15:27:48下载
- 积分:1
-
Grey-neural
灰色神经网络的预测算法,订单需求预测神经网络实例(Grey neural network prediction algorithm, order demand forecasting)
- 2014-09-24 10:35:45下载
- 积分:1
-
FOAGRNN
果蝇优化算法优化灰色神经网络。对不起各位,打包的时候忘记把数据打包进去了。这数据是个25*3的矩阵。前两列数据为{0,1}之间,同一排,若前两个数有一位小于0.5,则第三位为1.否则为0.如此组合25组数据。(FOA gray neural network optimization.)
- 2015-04-13 11:26:44下载
- 积分:1