登录
首页 » matlab » Tracking

Tracking

于 2014-09-29 发布 文件大小:4KB
0 174
下载积分: 1 下载次数: 6

代码说明:

  edited the face tracking example using klt to use my facial feature points The original inbuilt example that comes with matlab can edited usin

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • matchchinese
    本程序实现汉字和字符的识别匹配,通过该算法,可以实现手写体的字符和汉字的识别(This procedure to achieve identification of characters and character matching, through the algorithm, can achieve the character and Chinese character handwriting recognition)
    2009-12-18 14:29:22下载
    积分:1
  • modularpca
    face detection in matlab. accuracy is about 99.3 . basic code of matlab need to execute in matlab
    2010-08-22 03:33:08下载
    积分:1
  • simulated-annealing
    代码为模拟退火法,利用matlab工具编写。(the code is simulated annealing which written by matlab.)
    2015-01-03 16:36:11下载
    积分:1
  • 故障诊断
    利用MATLAB采取频率变化比方法实现工程结构损伤识别(Damage identification of engineering structures using frequency change ratio method based on MATLAB)
    2020-12-26 19:19:03下载
    积分:1
  • MSRM
    this will helpful for region merging algorithm
    2009-11-18 13:55:54下载
    积分:1
  • yichuan
    matlab遗传算法几个程序代码,大概有5个左右(Several genetic algorithm matlab code, probably about 5)
    2009-05-06 19:16:09下载
    积分:1
  • common-command-matlab
    matlab的常用命令,对于matlab的初学者非常有用。都是关于matlab的最基本的函数命令。(matlab commonly used commands, very useful for matlab beginners. Are the most basic functions on matlab command.)
    2011-08-25 21:55:43下载
    积分:1
  • tamrin17
    nonlinear control sliding modeee
    2014-10-05 05:34:52下载
    积分:1
  • doa
    波达估计优化算法的matlab程序代码,doa估计在matlab里的实现(DOA alor)
    2015-01-08 15:56:51下载
    积分:1
  • KNN
    K最邻近密度估计技术是一种分类方法,不是聚类方法。 不是最优方法,实践中比较流行。 通俗但不一定易懂的规则是: 1.计算待分类数据和不同类中每一个数据的距离(欧氏或马氏)。 2.选出最小的前K数据个距离,这里用到选择排序法。 3.对比这前K个距离,找出K个数据中包含最多的是那个类的数据,即为待分类数据所在的类。(K nearest neighbor density estimation is a classification method, not a clustering method. It is not the best method, but it is popular in practice. Popular but not necessarily understandable rule is: 1. calculate the distance between the data to be classified and the data in each other (Euclidean or Markov). 2. select the minimum distance from the previous K data, where the choice sorting method is used. 3. compare the previous K distances to find out which K data contains the most data of that class, that is, the class to which the data to be classified is located.)
    2020-10-23 14:37:22下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载