登录
首页 » matlab » h1

h1

于 2013-09-17 发布 文件大小:1KB
0 219
下载积分: 1 下载次数: 1

代码说明:

说明:  关于多智能体系统一致性的程序,解微分方程(Consistency of multi-agent systems program)

文件列表:

h1.m,1927,2013-09-09

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 3dcrack
    abaqus中的三微裂纹扩展,一起学习下(the abaqus of three micro-crack propagation, with learning under)
    2012-10-31 17:32:10下载
    积分:1
  • UEL and UMAT
    A summary of UEL and UMAT
    2020-06-28 14:40:02下载
    积分:1
  • PolynomialCurveFitting
    说明:  基于python的多项式曲线拟合,本程序以1 3 5 9次为例子。(Based on the polynomial curve fitting of python, this program takes 1 3 5 9 times as an example.)
    2020-05-28 10:04:30下载
    积分:1
  • projection
    CT迭代重建算法中3维投影矩阵的生成算法,该算法对学习计算机断层层析成像很有帮助。(CT image reconstruction projection ,3D)
    2012-10-26 23:46:42下载
    积分:1
  • Python for Data Analysis, 2nd Edition
    Python for Data Analysis DATA WRANGLING WITH PANDAS, NUMPY, AND IPYTHON
    2018-09-15 23:03:37下载
    积分:1
  • p3-shannon
    山农的通信的数学方法。是信息论的奠基性文章。(Shannong mathematical methods of communication. Is the foundation of information theory article.)
    2007-08-14 21:49:49下载
    积分:1
  • search
    这是一个数组练习,程序的作用是查询一个一维数组(数值型数组)中每一个元素出现的次数,且元素出现的顺序不能改变(This is an array of exercises, the program' s role is to query a one-dimensional array (numeric array) in the number of occurrences of each element, and the element can not be changed in order of appearance)
    2013-07-26 09:37:09下载
    积分:1
  • neidian
    内点法求解线性规划问题; 通过内点法实现了线性规划问题的求解; 内有说明文件;(Interior point method for solving linear programming problems through the realization of the interior point method for solving linear programming problem there is documentation )
    2020-06-29 12:20:01下载
    积分:1
  • Caipiao
    新的彩票预测抄来的!真的是抄来的!真的真的真真的!(The new lottery prediction copy to Really copied! Really, really Barbara!)
    2012-07-29 16:12:47下载
    积分:1
  • k-means-clustering
    用C语言程序通过先随机选取K个对象作为初始的聚类中心。然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。一旦全部对象都被分配了,每个聚类的聚类中心会根据聚类中现有的对象被重新计算。(C Programming Language by first randomly selected the K object as initial cluster centers. And then calculate the distance between each object and each seed cluster center, and assign each object to its nearest cluster center. Cluster centers, and the object assigned to them on behalf of a clustering. Once all the objects are assigned to each cluster cluster centers will be based on the existing object clustering is recalculated.)
    2012-09-20 11:50:09下载
    积分:1
  • 696516资源总数
  • 106415会员总数
  • 3今日下载