登录
首页 » matlab » keygen_vmware7_x86

keygen_vmware7_x86

于 2011-10-05 发布 文件大小:329KB
0 163
下载积分: 1 下载次数: 4

代码说明:

  keygen vmware7 x86 虛擬軟體7 支援 x86 的解碼映像檔(keygen vmware7 x86 虚拟软体7 支援 x86 的解码映像档)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • ear4
    ImagesIEEE上的论文有关图像处理的论文:走向快速3D耳识别现实生活中的应用生物识别技术 (TOWARDS FAST 3D EAR RECOGNITION FOR REAL-LIFE BIOMETRIC APPLICATIONS)
    2009-05-12 15:03:36下载
    积分:1
  • EMDandIMF
    可用来直接运行的基于matlab的EMD执行语句,请各位多交流(dfefe )
    2012-04-21 21:57:39下载
    积分:1
  • pso
    matlab pso algorithm code that can use easily
    2014-02-04 15:56:12下载
    积分:1
  • Motion-Planning-Algorithms-master
    说明:  A*算法机器人路径规划,利用matlab仿真实现。(A* algorithm robot path planning, and MATLAB simulation is used to realize.)
    2021-04-20 15:40:50下载
    积分:1
  • matlabandcontrolsystemsimulation
    针对于自动控制原理方面matlab应用的基础教程(Automatic Control Theory to address aspects of the application of the basis of matlab tutorials)
    2007-12-20 14:47:41下载
    积分:1
  • shuzixindaohua
    设计抗混叠FIR滤波器实现数字下变频的设计(Design of anti-aliasing FIR filter design for digital down conversion)
    2010-10-08 10:11:08下载
    积分:1
  • Matlab
    matlab的书籍,很不错的,包括matlab命令集,很有用的东西。(matlab books, very good, including the matlab command set, very useful things.)
    2008-04-15 21:38:44下载
    积分:1
  • ParticleFiter
    粒子滤波案例,结构有待改进,希望大家提点意见谢谢(the particle filtering method which needs to be modified by others)
    2012-05-11 18:44:39下载
    积分:1
  • 1807.01622
    深度神经网络在函数近似中表现优越,然而需要从头开始训练。另一方面,贝叶斯方法,像高斯过程(GPs),可以利用利用先验知识在测试阶段进行快速推理。然而,高斯过程的计算量很大,也很难设计出合适的先验。本篇论文中我们提出了一种神经模型,条件神经过程(CNPs),可以结合这两者的优点。CNPs受灵活的随机过程的启发,比如GPs,但是结构是神经网络,并且通过梯度下降训练。CNPs通过很少的数据训练后就可以进行准确的预测,然后扩展到复杂函数和大数据集。我们证明了这个方法在一些典型的机器学习任务上面的的表现和功能,比如回归,分类和图像补全(Deep neural networks perform well in function approximation, but they need to be trained from scratch. On the other hand, Bayesian methods, such as Gauss Process (GPs), can make use of prior knowledge to conduct rapid reasoning in the testing stage. However, the calculation of Gauss process is very heavy, and it is difficult to design a suitable priori. In this paper, we propose a neural model, conditional neural processes (CNPs), which can combine the advantages of both. CNPs are inspired by flexible stochastic processes, such as GPs, but are structured as neural networks and trained by gradient descent. CNPs can predict accurately with very little data training, and then extend to complex functions and large data sets. We demonstrate the performance and functions of this method on some typical machine learning tasks, such as regression, classification and image completion.)
    2020-06-23 22:20:02下载
    积分:1
  • beamforming
    Beamforming 2x1 rayleigh
    2010-06-25 07:37:27下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载