-
GM(11)
gm模型 gm模型 gm模型 gm模型 gm模型 GM(1,1)(gm model gm model gm model gm model gm model GM (1,1))
- 2006-05-28 09:24:05下载
- 积分:1
-
CS_OMP_my_final
CS算法OMP该进算法,对傅里叶与 的信号进行稀疏采样(Compressive Sensing OMP)
- 2013-10-22 18:36:26下载
- 积分:1
-
Gs_ChGA_discrete_LYX_20070830
基于灰色系统方法的离散多目标优化设计程序,很好用(Based on gray system method of discrete multi-objective optimization design process, well used)
- 2008-12-21 09:58:32下载
- 积分:1
-
ansys-structure
ansys 求解桥梁结构弯矩响线的命令流,非常实用(ansys solving the stream of the bridge structure bending ring line command is very useful)
- 2012-05-30 12:04:18下载
- 积分:1
-
11
说明: 用二分法求解一元五次非线性方程的实数解,在高等电路学习中有很好的用途。(One yuan of five nonlinear equations dichotomy solving real solutions, there is a very good use in the higher circuit learning.)
- 2012-10-27 20:52:45下载
- 积分:1
-
zairuzhidiandandao
用来计算航天器再入质点弹道,其中包括插值算法,龙格库塔法以及大气模型(Used to calculate the particle trajectory of spacecraft re-entry, including the interpolation algorithm, Runge-Kutta method as well as atmospheric model)
- 2008-04-27 11:09:17下载
- 积分:1
-
ISO_VOR
求解二维平面等熵涡的matlab程序,计算流体力学,MacCormack格式,均匀网格(Solving two-dimensional plane isentropic vortex matlab program, computational fluid dynamics, MacCormack format, uniform grid)
- 2020-12-08 18:59:20下载
- 积分:1
-
Dns-code
牛顿 非牛顿流体数值模拟源代码,对粘弹性流体湍流减阻进行分析(Newton non-Newtonian fluid numerical simulation of the source code, to analyze the viscoelastic fluid turbulent drag reduction)
- 2012-06-14 12:03:31下载
- 积分:1
-
RSDA
工具箱 (粗糙集数据分析工具箱)
matla 中使用
(Kit (Rough Set Data Analysis Toolbox))
- 2009-05-22 22:01:02下载
- 积分:1
-
SVD
% 奇异值分解 (sigular value decomposition,SVD) 是另一种正交矩阵分解法;SVD是最可靠的分解法,
% 但是它比QR 分解法要花上近十倍的计算时间。[U,S,V]=svd(A),其中U和V代表二个相互正交矩阵,
% 而S代表一对角矩阵。 和QR分解法相同者, 原矩阵A不必为正方矩阵。
% 使用SVD分解法的用途是解最小平方误差法和数据压缩。用svd分解法解线性方程组,在Quke2中就用这个来计算图形信息,性能相当的好。在计算线性方程组时,一些不能分解的矩阵或者严重病态矩阵的线性方程都能很好的得到解( Singular value decomposition (sigular value decomposition, SVD) is another orthogonal matrix decomposition method SVD decomposition is the most reliable method, but it takes more than QR decomposition near ten times the computing time. [U, S, V] = svd (A), in which U and V on behalf of two mutually orthogonal matrix, and the S on behalf of a diagonal matrix. And QR decomposition are the same, the original matrix A is no need for the square matrix. The use of SVD decomposition method are used as a solution of least squares error method and data compression. Using SVD decomposition solution of linear equations, in Quke2 on to use this information to calculate the graphics performance quite good. In the calculation of linear equations, some indecomposable matrix or serious pathological matrix of linear equations can be a very good solution)
- 2020-12-21 10:29:08下载
- 积分:1