-
200715211954208
一个有关AT88SC102卡读写方面的资料,电气性能介绍,读写时序等等方面的内容(A card reader on AT88SC102 information, electrical performance, presentations, read and write timing, etc., the contents of the)
- 2009-11-11 23:40:08下载
- 积分:1
-
matlab
MATLAB LESSONS FROM UNIVERSITY
- 2012-02-12 13:06:46下载
- 积分:1
-
matlab_netcdf_5_0
读取Network Common Data Form (netCDF)数据(Read Network Common Data Form (netCDF) data)
- 2008-07-12 02:26:53下载
- 积分:1
-
liegouzhuituzi51
数学实验中用matlab对猎狗追逐兔子进行的仿真和分析(Matlab to the hunting dog chasing rabbits simulation)
- 2012-05-11 10:46:02下载
- 积分:1
-
chonggou
配电网重构,实现平衡负荷,降低配电网网损的功能。(Distribution network reconfiguration, balanced load, power distribution network loss reduction.
)
- 2021-02-26 01:39:38下载
- 积分:1
-
VoronoiLimit
Matlab Introduction (Spanish)
- 2013-04-01 09:31:59下载
- 积分:1
-
para
船舶参数横摇,参数横摇的3自由度模型,包括垂荡和纵摇作用(Parametric Rolling of ships, the 3 degree of freedom model of parametric rolling, including heave and pitch function
)
- 2020-09-02 16:38:08下载
- 积分:1
-
base
1.分别在两个图中画出δ(n)和δ(n-2),其中-10≤n≤10,画出U(n)其中-10≤n≤10。
2.分别在两个图中画出x1(n)=cos(2π×20×0.01×n),0≤n≤10和x2(n)=(0.8)n,1≤n≤6。
3.由上一题,计算y(n)=x1(n)+x2(n),并画图。(1. Draw the figure at two δ (n) and δ (n-2), where-10 ≤ n ≤ 10, draw the U (n) where-10 ≤ n ≤ 10. 2. Respectively in the two Draw the figure x1 (n) = cos (2π × 20 × 0.01 × n), 0 ≤ n ≤ 10 and x2 (n) = (0.8) n, 1 ≤ n ≤ 6. 3. from the previous question, calculate y (n) = x1 (n)+ x2 (n), and drawing.)
- 2010-11-26 16:34:06下载
- 积分:1
-
VectorExtraction
Extracting Vectors from Arrays
- 2012-07-20 01:08:56下载
- 积分:1
-
SRGTSToolbox
说明: SURROGATES工具箱是一个多维函数逼近和优化方法的通用MATLAB库。当前版本包括以下功能:
实验设计:中心复合设计,全因子设计,拉丁超立方体设计,D-optimal和maxmin设计。
代理:克里金法,多项式响应面,径向基神经网络和支持向量回归。
错误和交叉验证的分析:留一法和k折交叉验证,以及经典的错误分析(确定系数,标准误差;均方根误差等;)。
基于代理的优化:高效的全局优化(EGO)算法。
其他能力:通过安全裕度进行全局敏感性分析和保守替代。(SURROGATES Toolbox is a general-purpose MATLAB library of multidimensional function approximation and optimization methods. The current version includes the following capabilities:
Design of experiments: central composite design, full factorial design, Latin hypercube design, D-optimal and maxmin designs.
Surrogates: kriging, polynomial response surface, radial basis neural network, and support vector regression.
Analysis of error and cross validation: leave-one-out and k-fold cross-validation, and classical error analysis (coefficient of determination, standard error; root mean square error; and others).
Surrogate-based optimization: efficient global optimization (EGO) algorithm.
Other capabilities: global sensitivity analysis and conservative surrogates via safety margin.)
- 2020-04-20 22:30:13下载
- 积分:1