-
Gauss-Seidel-in-C-Program
高斯-赛德尔迭代法是解线性方程组的常规算法,本文是C语言的高斯-赛德尔计算代码(Gauss-Seidel C program)
- 2016-04-08 09:51:43下载
- 积分:1
-
calculator
用mfc实现计算器的基本操作,支持键盘输入,并保留xp风格,可计算平方,幂,时间显示等操作(With mfc achieve the basic operation of the calculator, support for keyboard input, and retain xp style, calculates the square, power, time display and other operations)
- 2013-10-23 15:22:24下载
- 积分:1
-
cp
说明: 最小二乘法拟合曲线的一个小程序,采用C++程序,(Least-squares fitting curve C++ program)
- 2012-07-24 12:26:31下载
- 积分:1
-
ykb
实对称矩阵特征值与特征向量的雅克比法,ap为是对称矩阵,vp返回特征向量(Real Symmetric Matrix Eigenvalues and Eigenvectors of the Jacobian method, ap is a symmetric matrix, vp return eigenvector)
- 2020-08-03 17:18:34下载
- 积分:1
-
牛顿法解混沌
说明: 一个用C语言编写的求混沌序列的源程序,挺好的!(a C language for the chaotic sequence of the source, very good!)
- 2005-10-25 09:34:33下载
- 积分:1
-
最优化作业C++源代码
用C++编的一些最优化作业中的程序,有Newton法,DFP法,共轭梯度法,单纯形法,内点法,外点法,内外点法,都能使用,我已经全部调试过了(C compile some of the most optimized operating procedures, Newton, DFP, conjugate gradient method, the simplex method, interior point method, the points outside the law, outside point method can use, I have all over Debugging)
- 2021-03-29 10:49:11下载
- 积分:1
-
wogefasuanli
涡格法计算机翼的涡强,对不同剖面形状,拱度等进行了比较分析。并且与书籍上对比(Vortex lattice method the computer wing of the vortex is strong, the shape of different profiles, such as camber, a comparative analysis.)
- 2011-07-10 20:40:16下载
- 积分:1
-
zipf-random
随机数生成程序,该随机数呈zipf分布,就是大家常说对于内容的访问遵循80/20原则,也就是20 的内容,会占有80 的访问量。(Random number generator, the zipf was distributed random numbers, that is, we often say that the access to the content to follow the 80/20 principle, which is 20 of the content will occupy 80 of visits.)
- 2013-06-27 17:56:45下载
- 积分:1
-
FFT
提供基二FFT(频域)的C语言算法,希望对大家有用()
- 2007-07-29 08:58:54下载
- 积分:1
-
Euler_DG_Quadrilateral_2D
自己写了一个二维Euler方程的间断有限元程序
上次发了一个三角形单元的程序 因为不是曲边单元 所以在圆柱后面容易形成涡
现在把程序改为曲边四边形单元了 没有涡出现
单元是8节点四边形单元 节点编号顺序是 1 5 2 6 3 7 4 8 也就是四个角点依次
是1 2 3 4 然后是边的中点编号 5 6 7 8.
时间推进采用 Runge-Kutta 方法
数值通量采用全局Lax-Friedrichs通量
仍然不能捕捉激波 因为没有做重构或者加人工粘性 等这个做出来了 再发一次。
程序没有进行优化 比如说内存的消耗没有优化 比如直边单元的边界积分仍然采
用了曲边的积分方法 增加了计算量 比如面积分、线积分都是采用的是Gauss-
Legendre-Lobatto积分 积分精度会比一般的Gauss-Legendre积分精度低一阶 等
等问题。 二维的 纯属交流性质 就没有考虑这些问题 ^_^
如果物面全部是直边 那么只要改变一个参数N 就可以获得不同的计算精度 且具
有谱精度 因为单元的节点是Gauss-Legendre-Lobatto积分点。 其实就是谱元法
(物面是曲边的情况我不清楚是不是也可以通过提高基函数的阶数 也就是增加N
来提高计算精度)(Wrote a two-dimensional Euler equations with discontinuous finite element program
Last made a triangular element of the program, not curved edge unit is so easy to form a vortex in the cylinder behind the
Program to curved edge quadrilateral element vortices appear
Unit is the order of 8-node quadrilateral element node number is 15,263,748 which is the four corners of the points in turn
Is 1234 and then the side of the midpoint of the number 5678.
Time promote the use of Runge-Kutta method
Numerical flux of the overall situation of Lax-Friedrichs, flux
Still can not capture the shock wave did not do the reconstruction or artificial viscosity do it Zaifayici.
The program is not optimized for example, memory consumption is not optimized such as straight-edge boundary integral of the unit is still mining
Integral method to increase the amount of computation such as surface integral with a curved edge, the line integral using the Gauss-
The Legendr)
- 2021-01-29 12:58:40下载
- 积分:1