登录
首页 » matlab » PG_BOW_DEMO

PG_BOW_DEMO

于 2011-11-01 发布 文件大小:3501KB
0 165
下载积分: 1 下载次数: 567

代码说明:

  图像的特征用到了Dense Sift,通过Bag of Words词袋模型进行描述,当然一般来说是用训练集的来构建词典,因为我们还没有测试集呢。虽然测试集是你拿来测试的,但是实际应用中谁知道测试的图片是啥,所以构建BoW词典我这里也只用训练集。 其实BoW的思想很简单,虽然很多人也问过我,但是只要理解了如何构建词典以及如何将图像映射到词典维上去就行了,面试中也经常问到我这个问题,不知道你们都怎么用生动形象的语言来描述这个问题? 用BoW描述完图像之后,指的是将训练集以及测试集的图像都用BoW模型描述了,就可以用SVM训练分类模型进行分类了。 在这里除了用SVM的RBF核,还自己定义了一种核: histogram intersection kernel,直方图正交核。因为很多论文说这个核好,并且实验结果很显然。能从理论上证明一下么?通过自定义核也可以了解怎么使用自定义核来用SVM进行分类。(Image features used in a Dense Sift, by the Bag of Words bag model to describe the word, of course, the training set is generally used to build the dictionary, because we do not test set. Although the test set is used as the test you, but who knows the practical application of the test image is valid, so I am here to build BoW dictionary only the training set. In fact, BoW idea is very simple, although many people have asked me, but as long as you understand how to build a dictionary and how to image map to the dictionary D up on the line, and interviews are often asked me this question, do not know you all how to use vivid language to describe this problem? After complete description of the image with BoW, refers to the training set and test set of images are described with the BoW model, the training of SVM classification model can be classified. Apart from having to use the RBF kernel SVM, but also their own definition of a nuclear: histogram intersection kernel, histogram )

文件列表:

PG_BOW_DEMO
...........\BOW
...........\...\CalculateDictionary.m,3821,2011-10-24
...........\...\CompilePyramid.m,3354,2011-10-24
...........\...\do_assignment.m,2384,2011-10-24
...........\...\do_classification_inter_svm.m,2198,2011-10-24
...........\...\do_classification_rbf_svm.m,1731,2011-10-24
...........\...\do_normalize.m,875,2010-12-21
...........\...\do_p_classification__inter_svm.m,2243,2011-10-24
...........\...\do_p_classification__rbf_svm.m,1382,2011-10-24
...........\...\draw_cm.m,1132,2011-10-24
...........\...\EuclideanDistance.m,1303,2010-12-21
...........\...\find_grid.m,446,2011-10-24
...........\...\find_sift_grid.m,4292,2010-09-08
...........\...\GenerateSiftDescriptors.m,2765,2011-10-24
...........\...\hist_isect.m,759,2009-01-17
...........\...\hist_isect_c.c,3305,2010-10-31
...........\...\hist_isect_c.mexw32,8192,2010-10-31
...........\...\load_image.m,154,2010-06-01
...........\...\MakeDataDirectory.m,601,2011-10-24
...........\...\make_dir.m,223,2008-12-10
...........\...\normalize_sift.m,650,2008-12-10
...........\...\num2string.m,324,2010-06-01
...........\...\read_image_db.m,264,2010-06-01
...........\...\rotateXLabels.m,14315,2010-10-16
...........\...\show_results_script.m,551,2011-10-24
...........\...\sumnormalize.m,258,2010-09-27
...........\images
...........\......\testing
...........\......\.......\Phoning





...........\......\.......\.......\Phoning_0046.jpg,8039,2010-12-01
...........\......\.......\.......\Phoning_0047.jpg,7224,2010-12-01
...........\......\.......\.......\Phoning_0048.jpg,5127,2010-12-01
...........\......\.......\.......\Phoning_0049.jpg,7508,2010-12-01
...........\......\.......\.......\Phoning_0050.jpg,8208,2010-12-01
...........\......\.......\.......\Phoning_0051.jpg,5768,2010-12-01
...........\......\.......\.......\Phoning_0052.jpg,8054,2010-12-01
...........\......\.......\.......\Phoning_0053.jpg,4570,2010-12-01
...........\......\.......\.......\Phoning_0054.jpg,6483,2010-12-01
...........\......\.......\.......\Phoning_0055.jpg,10949,2010-12-01
...........\......\.......\.......\Phoning_0056.jpg,6162,2010-12-01
...........\......\.......\.......\Phoning_0057.jpg,6260,2010-12-01
...........\......\.......\.......\Phoning_0058.jpg,6075,2010-12-01
...........\......\.......\.......\Phoning_0059.jpg,6552,2010-12-01
...........\......\.......\.......\Phoning_0060.jpg,6937,2010-12-01
...........\......\.......\PlayingGuitar





...........\......\.......\.............\PlayingGuitar_0046.jpg,6645,2010-12-01
...........\......\.......\.............\PlayingGuitar_0047.jpg,7999,2010-12-01
...........\......\.......\.............\PlayingGuitar_0048.jpg,6086,2010-12-01
...........\......\.......\.............\PlayingGuitar_0049.jpg,8494,2010-12-01
...........\......\.......\.............\PlayingGuitar_0050.jpg,8091,2010-12-01
...........\......\.......\.............\PlayingGuitar_0051.jpg,6623,2010-12-01
...........\......\.......\.............\PlayingGuitar_0052.jpg,8579,2010-12-01
...........\......\.......\.............\PlayingGuitar_0053.jpg,6667,2010-12-01
...........\......\.......\.............\PlayingGuitar_0054.jpg,8841,2010-12-01
...........\......\.......\.............\PlayingGuitar_0055.jpg,6044,2010-12-01
...........\......\.......\.............\PlayingGuitar_0056.jpg,9012,2010-12-01
...........\......\.......\.............\PlayingGuitar_0057.jpg,6193,2010-12-01
...........\......\.......\.............\PlayingGuitar_0058.jpg,7634,2010-12-01
...........\......\.......\.............\PlayingGuitar_0059.jpg,7334,2010-12-01
...........\......\.......\.............\PlayingGuitar_0060.jpg,6169,2010-12-01
...........\......\.......\RidingBike





...........\......\.......\..........\RidingBike_0046.jpg,7738,2010-12-01
...........\......\.......\..........\RidingBike_0047.jpg,12070,2010-12-01
...........\......\.......\..........\RidingBike_0048.jpg,10762,2010-12-01
...........\......\.......\..........\RidingBike_0049.jpg,9391,2010-12-01
...........\......\.......\..........\RidingBike_0050.jpg,10658,2010-12-01
...........\......\.......\..........\RidingBike_0051.jpg,9922,2010-12-01
...........\......\.......\..........\RidingBike_0052.jpg,8439,2010-12-01
...........\......\.......\..........\RidingBike_0053.jpg,18064,2010-12-01
...........\......\.......\..........\RidingBike_0054.jpg,8102,2010-12-01
...........\......\.......\..........\RidingBike_0055.jpg,12955,2010-12-01
...........\......\.......\..........\RidingBike_0056.jpg,10017,2010-12-01
...........\......\.......\..........\RidingBike_0057.jpg,11733,2010-12-01
...........\......\.......\..........\RidingBike_0058.jpg,8225,2010-12-01
...........\......\.......\..........\RidingBike_0059.jpg,11828,2010-12-01
...........\......\.......\..........\RidingBike_0060.jpg,10048,2010-12-01
...........\......\.......\RidingHorse





...........\......\.......\...........\RidingHorse_0046.jpg,7993,2010-12-01
...........\......\.......\...........\RidingHorse_0047.jpg,10127,2010-12-01

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • fbp
    滤波反投影CT图像重建算法 filter-backproject reconstruction, including feldkamp (FDK) cone beam(Filter back projection algorithm for CT image reconstruction filter-backproject reconstruction, including feldkamp (FDK) cone beam)
    2008-12-09 15:21:19下载
    积分:1
  • imageReadAndShow2
    imageReadAndShow2.cpp,读取asc文件,并在VTK中渲染显示...(read ASC File,using VTK)
    2011-05-26 15:38:29下载
    积分:1
  • CISBitmap
    从Cbitmap派生的位图类,可通过指定一种颜色把一幅位图变透明,而它的使用差不多同Cbitamp一样简单。类中包含了两个文件:CISBitmap.cpp和CISBitmap.h,使用时附加进工程,可快速实现BMP位图图像的透明处理。(Cbitmap derived from the bitmap type, you can specify a color by a bitmap becomes transparent, and it s almost as simple as using the same Cbitamp. Class contains two files: CISBitmap.cpp and CISBitmap.h, into the use of additional works can be quickly processed to achieve a transparent bitmap BMP images.)
    2014-06-05 19:19:23下载
    积分:1
  • 检测高光和消除高光代码
    说明:  准确检测图像中的高光区域,并对检测出的高光区域的高光进行去除(Detect highlights, remove highlights)
    2020-09-14 13:17:58下载
    积分:1
  • IRandvisbletuxiangpeizhun
    针对可见光与红外图像的特点和难点,提出了可见光与红外图像配准与融合中的关键技术,即: 使用新型的基于一维最大类间方差和最大连通性测量的图像分割方法对源图像进行分割来更好地实行图像粗 配准 使用新型的特征点提取方法,特征点的匹配及误匹配的消除来更好地实行图像精配准 采用新型的基 于区域的树状小波活性测度计算来实现树状小波图像融合 利用自生成神经网络来实现模栩图像融合. (For visible light and infrared images of the characteristics and difficulties, a visual and infrared image registration and integration of key technologies, namely: the use of new one-dimensional based on the largest variance between-class connectivity and the largest measuring method of image segmentation source image segmentation to better implementation of coarse image registration the use of a new type of feature point extraction method, feature points of the match and the elimination of false matches to better the implementation of image fine registration the use of new tree-based wavelet calculated to measure the achievement of the activity tree wavelet image fusion the use of self-generating neural network to achieve image fusion Xu mode.)
    2009-04-20 11:49:14下载
    积分:1
  • JROI
    Compression of face images impact the performance of face recognition (FR) systems. JPEG Region of Interest (JROI) compression maintains high image quality in facial regions while compressing the background more, with minimal impact on FR performance.(Compression of face images impact the perf ormance of face recognition (FR) systems. JPEG Region of Interest (JROI) compression maintai ns high image quality in facial regions while co mpressing the background more, with minimal impact on FR performance.)
    2007-02-15 22:58:14下载
    积分:1
  • alphaMatting
    基于alpha matting的抠图技术(Alpha matting based matting techniques)
    2018-02-27 11:20:37下载
    积分:1
  • ellipse_fit
    基于直接最小二乘法的椭圆拟合程序,比较实用,适用于图像处理,椭圆拟合方面研究的初学者(Direct least square method based on ellipse fitting procedure more practical for image processing, aspects of ellipse fitting for beginners)
    2010-11-26 11:22:25下载
    积分:1
  • 配准校正
    利用matlab对已知多对控制点的情况下进行两张图像校正,该算法能够取得较好的结果(Using matlab to correct two images when multiple pairs of control points are known.The algorithm can get good results.)
    2020-12-30 21:59:00下载
    积分:1
  • Image-Processing-Based-on-PDE
    《图像处理的偏微分方程方法》随书光盘完整版 本光碟中包含五个文件夹。 (1)视频剪辑:可供教学演示,其中, two_cells 是采用改进的变分水平集方法,实现GAC模型图像分割的演化过程; denoissing 是利用P_M方程,对图像平滑去噪的演化过程 curve_linear_heat_flow 是利用FT实现的闭合曲线的线性热流演化过程。 (2)二值图像:其中的图像可供形态学图像处理实验用,也可通过提取对象的边界,供曲线演化实验使用。 (3)灰度图象和彩色图像:其中的图像,可以作为图像分割,平滑滤波,反差增强,彩色增强以及图像放大等实验的素材。 (4) MATLAB程序:其中包含10余个MATLAB程序或(函数)的源代码。程序中所作的注释,与书中关于对应算法的描述是一致的。 本光碟中的所有内容,仅供教学和研究参考。(" Image Processing Based on PDE" CD with the book contains the full version of the disc five folders. (1) Video clip: for teaching demonstration, which, " two_cells" is improved variational level set methods to achieve the evolution of GAC model image segmentation " denoissing" is the use of P_M equation, the evolution of image smoothing denoising process " curve_linear_heat_flow" is the use of a closed curve FT achieve a linear heat evolution. (2) binary image: one of the images for morphological image processing experiments, it can also be obtained by extracting the object boundary curve evolution for experimental use. (3) gray-scale images and color images: images which can be used as image segmentation, filtering, contrast enhancement, color enhancement and image amplification test material. (4) MATLAB Program: which includes more than 10 or MATLAB program (function) of the source code. Comments made in the program, and a description of the boo)
    2015-10-01 10:41:21下载
    积分:1
  • 696518资源总数
  • 105885会员总数
  • 31今日下载