登录
首页 » matlab » the-matched-filter

the-matched-filter

于 2021-02-25 发布 文件大小:112KB
0 208
下载积分: 1 下载次数: 31

代码说明:

  通过对匹配滤波器的了解,使用matlab编程实现匹配滤波器滤波(By understanding the matched filter, matched filter using matlab programming filtering)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • icp
    icp算法源代码,主要用于点云拼合,是基于matlab上编写的。(icp algorithm source code, mainly used for point cloud assembly is prepared based on matlab.)
    2009-02-10 09:58:00下载
    积分:1
  • backtrack1
    This function implements brute force bactracking to solve the knapsack problem.
    2009-03-05 01:26:42下载
    积分:1
  • word
    matlab经典教材并且其中有部分确实写得不错(Matlab classic textbook and some really well-written)
    2012-03-30 11:18:45下载
    积分:1
  • ControLorenz
    利用反馈控制可以将洛伦兹系统控制到任意状态(control Lorenz system to arbitrary state using feedback control)
    2021-03-30 16:49:10下载
    积分:1
  • Fourier_Matlab
    基于Matlab进行傅里叶变换的算法及程序代码(Matlab-based Fourier transform algorithms and program code)
    2011-10-12 20:22:50下载
    积分:1
  • triple-damped-oscillator-simulink-model
    triple damped oscillator simulink model
    2011-10-25 23:04:08下载
    积分:1
  • ldpc_rec_dec
    LDPC码的编译码程序,用的是LU分解算法,和BP译码算法,在Matlab上调试通过(LDPC encoder and decoder)
    2010-06-08 12:23:06下载
    积分:1
  • selection_diversity
    说明:  接收端选择性多样化,用于优化瑞丽信道的衰落,减少误码率(selection diversity)
    2011-03-16 22:19:41下载
    积分:1
  • genetic-algorithms-
    基于遗传算法和非线性规划的函数寻优算法,用遗传算法和非线性规划的函数寻优算法寻找最优值,其中包括三个线性例子和三个非线性例子。(Based on genetic algorithms and nonlinear programming function optimization algorithm, genetic algorithm and nonlinear programming function optimization algorithm to find the optimal value, which includes three examples and three linear nonlinear examples.)
    2013-07-17 14:18:39下载
    积分:1
  • inpainting
    image inpainting (CS7495 Final Project Sooraj Bhat Object Removal by Exemplar-based Inpainting USING THE CODE Everything was done in Matlab and MEX (i.e. a C function callable from Matlab). First, the C code needs to be compiled. At the Matlab prompt, type: mex bestexemplarhelper.c You should then be able to run the following (which takes ~2mins on my 2GHz Pentium 4 laptop with 256MB of RAM): [i1,i2,i3,c,d,mov] = inpaint( bungee0.png , bungee1.png ,[0 255 0]) A smaller run (~25 seconds) would be: [i1,i2,i3,c,d,mov] = inpaint( bw0.png , bw2.png ,[0 255 0]) To visualize: plotall close movie(mov) SAMPLE IMAGES & RESULTS *0.png The original images ( bw and bungee ) *{1,2}.png The different fill region masks. *P2.png Plots of confidence and data terms. *P5.png Plots of original, fill region, inpainted images and confidence and data terms. Other images in the dir contain redundant information. I di)
    2010-06-19 21:00:49下载
    积分:1
  • 696518资源总数
  • 106010会员总数
  • 4今日下载