登录
首页 » matlab » SequentialImportanceSampling

SequentialImportanceSampling

于 2012-09-12 发布 文件大小:1KB
0 160
下载积分: 1 下载次数: 16

代码说明:

  Sequential Importance Sampling for linear gaussian model.

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • homework4
    单脉冲测角程序,实现阵列的比幅法和比相法测角(monopulse angle estimation processing, based on the amplitude comparison and phase comparison)
    2021-04-20 19:08:50下载
    积分:1
  • Principles
    一本介绍无线通信仿真的国外经典教材. <<通信系统仿真原理与无线应用>>(A wireless communications simulation to introduce classical materials abroad. < < Principles of Communication Systems Simulation with Wireless Applications> > )
    2009-05-27 14:27:38下载
    积分:1
  • fft
    在MATLAB中利用FFT函数来进行变换,其中利用到了HAMMING窗(Using FFT function in MATLAB to carry out transformation, which used to HAMMING window)
    2010-11-25 21:39:23下载
    积分:1
  • Delta_Sigma
    SIGMA DELTA MODULATOR
    2012-04-09 12:29:12下载
    积分:1
  • nengliangfangzhenyingwen
    无线传感器网络四种分簇算法的关于能量消耗,能量消耗均衡度,节点死亡的仿真比较,leach,leach-c,deec,deec-c(Wireless sensor network clustering algorithm on the four energy consumption, energy consumption equilibrium degree, comparing the simulation node death, leach, leach-c, deec, deec-c)
    2021-03-19 18:49:19下载
    积分:1
  • adaptive-control-MATLAB-simulation
    系统辨识与自适应控制MATLAB仿真一书的代码(code of System identification and adaptive control MATLAB simulation of a )
    2013-10-05 22:13:28下载
    积分:1
  • julei
    本程序主要是把相同的类聚在一起,便于后续的分类,方法使用简单方便。(This procedure is the same class together, to facilitate the subsequent classification method easy to use.)
    2013-12-05 11:00:42下载
    积分:1
  • MyKmeans
    实现聚类K均值算法: K均值算法:给定类的个数K,将n个对象分到K个类中去,使得类内对象之间的相似性最大,而类之间的相似性最小。 缺点:产生类的大小相差不会很大,对于脏数据很敏感。 改进的算法:k—medoids 方法。这儿选取一个对象叫做mediod来代替上面的中心 的作用,这样的一个medoid就标识了这个类。步骤: 1,任意选取K个对象作为medoids(O1,O2,…Oi…Ok)。 以下是循环的: 2,将余下的对象分到各个类中去(根据与medoid最相近的原则); 3,对于每个类(Oi)中,顺序选取一个Or,计算用Or代替Oi后的消耗—E(Or)。选择E最小的那个Or来代替Oi。这样K个medoids就改变了,下面就再转到2。 4,这样循环直到K个medoids固定下来。 这种算法对于脏数据和异常数据不敏感,但计算量显然要比K均值要大,一般只适合小数据量。(achieving K-mean clustering algorithms : K-means algorithm : given the number of Class K, n will be assigned to target K to 000 category, making target category of the similarity between the largest category of the similarity between the smallest. Disadvantages : class size have no great difference for dirty data is very sensitive. Improved algorithms : k-medoids methods. Here a selection of objects called mediod to replace the center of the above, the logo on a medoid this category. Steps : 1, arbitrary selection of objects as K medoids (O1, O2, Ok ... ... Oi). Following is a cycle : 2, the remaining targets assigned to each category (in accordance with the closest medoid principle); 3, for each category (Oi), the order of selection of a Or, calculated Oi Or replace the consumption-E (Or))
    2005-07-26 01:32:58下载
    积分:1
  • yuandaima
    数据挖掘,进行关键字识别 基于划分的算法更快(data dining and recognise the particular words )
    2010-06-21 21:16:26下载
    积分:1
  • feedback
    simulink了一个可以实现前馈和反馈控制的模型,两个拨钮选择前馈还是反馈控制。(make a modle that can simulink a feedback and feedword control system.)
    2011-12-09 10:04:31下载
    积分:1
  • 696518资源总数
  • 105678会员总数
  • 22今日下载