登录
首页 » matlab » ScSR

ScSR

于 2020-11-24 发布 文件大小:26991KB
0 180
下载积分: 1 下载次数: 457

代码说明:

  Jianchao Yang 的基于稀疏表示的单幅图像重建的原始代码,先将高低训练图像分块,再将块训练成高低字典,将测试图像映射到低字典上,得到系数,再乘以高子典就得到最后的图像。对学习超分辨率同学的参考作用很大。(This is the original matlab code for super resolution by Jianchao Yang 。The method is sparse represent based on the overcomplete dictionary。)

文件列表:

ScSR
....\backprojection.m,460,2011-01-28
....\compute_rmse.m,293,2011-01-12
....\Data
....\....\Testing



....\....\Training





....\....\........\t16.bmp,83894,2007-10-14
....\....\........\t17.bmp,69786,2007-10-14
....\....\........\t18.bmp,55782,2007-10-14
....\....\........\t19.bmp,96174,2007-10-14
....\....\........\t2.bmp,92418,2007-10-14
....\....\........\t20.bmp,18462,2007-10-14
....\....\........\t21.bmp,41346,2007-10-14
....\....\........\t22.bmp,59718,2007-10-14
....\....\........\t23.bmp,46902,2007-10-14
....\....\........\t24.bmp,37290,2007-10-14
....\....\........\t25.bmp,125190,2007-10-14
....\....\........\t26.bmp,58742,2007-10-14
....\....\........\t27.bmp,126030,2007-10-14
....\....\........\t28.bmp,92550,2007-10-14
....\....\........\t3.bmp,89334,2007-10-14
....\....\........\t30.bmp,61662,2007-10-14
....\....\........\t31.bmp,101670,2007-11-09
....\....\........\t32.bmp,86646,2007-11-09
....\....\........\t34.bmp,66362,2007-11-09
....\....\........\t35.bmp,125306,2007-11-09
....\....\........\t36.bmp,114102,2007-11-23
....\....\........\t37.bmp,312390,2007-11-22
....\....\........\t38.bmp,200054,2007-11-22
....\....\........\t39.bmp,197350,2007-11-22
....\....\........\t4.bmp,128646,2007-10-14
....\....\........\t40.bmp,200082,2007-11-22
....\....\........\t42.bmp,202814,2007-11-23
....\....\........\t43.bmp,157134,2007-11-23
....\....\........\t44.bmp,115722,2007-11-23
....\....\........\t46.bmp,355146,2007-11-22
....\....\........\t47.bmp,143574,2007-11-22
....\....\........\t48.bmp,135462,2007-11-22
....\....\........\t49.bmp,243022,2007-11-22
....\....\........\t5.bmp,70734,2007-10-14
....\....\........\t50.bmp,259958,2007-11-22
....\....\........\t51.bmp,251910,2007-11-22
....\....\........\t52.bmp,207090,2007-11-22
....\....\........\t59.bmp,214134,2007-11-23
....\....\........\t6.bmp,90102,2007-10-14
....\....\........\t60.bmp,141394,2007-11-23
....\....\........\t61.bmp,111254,2007-11-23
....\....\........\t62.bmp,118194,2007-11-23
....\....\........\t63.bmp,148726,2007-11-23
....\....\........\t66.bmp,234090,2007-11-22
....\....\........\t7.bmp,83898,2007-10-14
....\....\........\tt1.bmp,407454,2009-05-21
....\....\........\tt12.bmp,343350,2009-05-21
....\....\........\tt14.bmp,153462,2009-05-21
....\....\........\tt15.bmp,216534,2009-05-21
....\....\........\tt17.bmp,238878,2009-05-21
....\....\........\tt18.bmp,95898,2009-05-21
....\....\........\tt19.bmp,190454,2009-05-21
....\....\........\tt2.bmp,459162,2009-05-21
....\....\........\tt20.bmp,266442,2009-05-21
....\....\........\tt21.bmp,383214,2009-05-21
....\....\........\tt24.bmp,339414,2009-05-21
....\....\........\tt25.bmp,414774,2009-05-21
....\....\........\tt26.bmp,358494,2009-05-21
....\....\........\tt27.bmp,283722,2009-05-21
....\....\........\tt3.bmp,455238,2009-05-21
....\....\........\tt4.bmp,427302,2009-05-21
....\....\........\tt5.bmp,406314,2009-05-21
....\....\........\tt7.bmp,142922,2009-05-21
....\....\........\tt9.bmp,436926,2009-05-21
....\Demo_Dictionary_Training.m,1437,2011-03-07
....\Demo_SR.m,2399,2011-03-07
....\Dictionary
....\..........\D_1024_0.15_5.mat,983828,2011-01-04
....\..........\D_512_0.15_5.mat,492077,2011-01-04
....\extr_lIm_fea.m,433,2011-01-28
....\L1QP_FeatureSign_yang.m,1608,2009-09-30
....\lin_scale.m,128,2011-03-04
....\patch_pruning.m,144,2011-03-07
....\Previous
....\........\ScSR.rar,12388885,2009-05-31
....\........\SR-Results.rar,3172715,2009-04-08
....\README.dat,1483,2011-10-30
....\RegularizedSC
....\.............\construct_reg_mat.m,394,2009-09-25
....\.............\display_network_nonsquare2.m,965,2009-03-05
....\.............\getObjective_RegSc.m,306,2009-09-24
....\.............\L1QP_FeatureSign_Set.m,331,2010-01-30
....\.............\L1QP_FeatureSign_yang.m,1608,2009-09-30
....\.............\l2ls_learn_basis_dual.m,2371,2009-03-05
....\.............\regsc.m,362,2009-09-25
....\.............\reg_sparse_coding.m,3307,2010-12-24

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • plsda
    说明:  matlab近红外光谱进行掺假判断,运用plsda建模可以进行真假鉴别(The near infrared spectrum of MATLAB is used to judge the adulteration, and plsda modeling can be used to identify the authenticity)
    2020-12-29 20:19:01下载
    积分:1
  • blindwatermark
    数字水印程序,包括多分辨嵌入水印、提取水印程序,盲水印嵌入、提取程序,以及滤波攻击和JPEG攻击程序,PSNR和相似度计算公式(MATLAB)(digital watermarking procedures, including multiresolution embedded watermark, watermark extraction procedure, blind watermark embedding and extraction procedures, Filtering and attack and attack JPEG procedures, PSNR and the similarity calculation formula (MATLAB))
    2007-05-28 13:28:26下载
    积分:1
  • map
    MAP超分辨率重建算法,实现图像的超分辨率重建。(the MAP code for super-resolution)
    2011-01-06 12:30:42下载
    积分:1
  • XIAOBO2wei
    图像处理,二维小波变化等指导,说明清晰实用。基于MATLAB(Image processing, two-dimensional wavelet change guidance on clear and practical.)
    2013-06-05 23:55:53下载
    积分:1
  • Readyuv
    matlab本身不带yuv视频读取函数,此函数读取并转换为RGB格式保存(Matlab itself does not have the yuv video reading function, which is read and converted to RGB format)
    2020-12-15 19:09:12下载
    积分:1
  • PCaK-means
    基于相位一致性与K-means方法的结合边缘检测(PC and K-means)
    2020-12-05 03:09:24下载
    积分:1
  • pcannc
    主分量分析对SAR图像目标进行特征提取,用最近临方法进行分类(Principal component analysis(PCA) of SAR image target feature extraction, classification using nearest-neighbor method)
    2021-01-01 21:58:58下载
    积分:1
  • fisher
    这是模式识别中线性分类器中最常用的fisher线性分类器,并在结果中画出了分类线和分类效果(This is image restoration in the Iterative Blind Deconvolution algorithm matlab source for the study of digital image has a lot of benefits!)
    2009-03-10 20:37:11下载
    积分:1
  • darkchannel
    暗通道去雾算法,可将风景图片实现去污效果。不会影响其原有的分辨率。效果比传统的均衡化好。(Dark channel dehazing algorithm, can achieve the decontamination effect picture. Will not affect its original resolution. Results than traditional good equalization.)
    2015-04-23 15:25:36下载
    积分:1
  • deeplab V3和unet
    利用全卷积神经网络,实现图像的语义分割,基于tensorflow的keras可以直接运行(Using the full convolutional neural network to achieve semantic segmentation of images, keras based on tensorflow can be run directly)
    2019-05-31 22:03:57下载
    积分:1
  • 696518资源总数
  • 105885会员总数
  • 31今日下载