登录
首页 » matlab » ScSR

ScSR

于 2020-11-24 发布 文件大小:26991KB
0 181
下载积分: 1 下载次数: 457

代码说明:

  Jianchao Yang 的基于稀疏表示的单幅图像重建的原始代码,先将高低训练图像分块,再将块训练成高低字典,将测试图像映射到低字典上,得到系数,再乘以高子典就得到最后的图像。对学习超分辨率同学的参考作用很大。(This is the original matlab code for super resolution by Jianchao Yang 。The method is sparse represent based on the overcomplete dictionary。)

文件列表:

ScSR
....\backprojection.m,460,2011-01-28
....\compute_rmse.m,293,2011-01-12
....\Data
....\....\Testing



....\....\Training





....\....\........\t16.bmp,83894,2007-10-14
....\....\........\t17.bmp,69786,2007-10-14
....\....\........\t18.bmp,55782,2007-10-14
....\....\........\t19.bmp,96174,2007-10-14
....\....\........\t2.bmp,92418,2007-10-14
....\....\........\t20.bmp,18462,2007-10-14
....\....\........\t21.bmp,41346,2007-10-14
....\....\........\t22.bmp,59718,2007-10-14
....\....\........\t23.bmp,46902,2007-10-14
....\....\........\t24.bmp,37290,2007-10-14
....\....\........\t25.bmp,125190,2007-10-14
....\....\........\t26.bmp,58742,2007-10-14
....\....\........\t27.bmp,126030,2007-10-14
....\....\........\t28.bmp,92550,2007-10-14
....\....\........\t3.bmp,89334,2007-10-14
....\....\........\t30.bmp,61662,2007-10-14
....\....\........\t31.bmp,101670,2007-11-09
....\....\........\t32.bmp,86646,2007-11-09
....\....\........\t34.bmp,66362,2007-11-09
....\....\........\t35.bmp,125306,2007-11-09
....\....\........\t36.bmp,114102,2007-11-23
....\....\........\t37.bmp,312390,2007-11-22
....\....\........\t38.bmp,200054,2007-11-22
....\....\........\t39.bmp,197350,2007-11-22
....\....\........\t4.bmp,128646,2007-10-14
....\....\........\t40.bmp,200082,2007-11-22
....\....\........\t42.bmp,202814,2007-11-23
....\....\........\t43.bmp,157134,2007-11-23
....\....\........\t44.bmp,115722,2007-11-23
....\....\........\t46.bmp,355146,2007-11-22
....\....\........\t47.bmp,143574,2007-11-22
....\....\........\t48.bmp,135462,2007-11-22
....\....\........\t49.bmp,243022,2007-11-22
....\....\........\t5.bmp,70734,2007-10-14
....\....\........\t50.bmp,259958,2007-11-22
....\....\........\t51.bmp,251910,2007-11-22
....\....\........\t52.bmp,207090,2007-11-22
....\....\........\t59.bmp,214134,2007-11-23
....\....\........\t6.bmp,90102,2007-10-14
....\....\........\t60.bmp,141394,2007-11-23
....\....\........\t61.bmp,111254,2007-11-23
....\....\........\t62.bmp,118194,2007-11-23
....\....\........\t63.bmp,148726,2007-11-23
....\....\........\t66.bmp,234090,2007-11-22
....\....\........\t7.bmp,83898,2007-10-14
....\....\........\tt1.bmp,407454,2009-05-21
....\....\........\tt12.bmp,343350,2009-05-21
....\....\........\tt14.bmp,153462,2009-05-21
....\....\........\tt15.bmp,216534,2009-05-21
....\....\........\tt17.bmp,238878,2009-05-21
....\....\........\tt18.bmp,95898,2009-05-21
....\....\........\tt19.bmp,190454,2009-05-21
....\....\........\tt2.bmp,459162,2009-05-21
....\....\........\tt20.bmp,266442,2009-05-21
....\....\........\tt21.bmp,383214,2009-05-21
....\....\........\tt24.bmp,339414,2009-05-21
....\....\........\tt25.bmp,414774,2009-05-21
....\....\........\tt26.bmp,358494,2009-05-21
....\....\........\tt27.bmp,283722,2009-05-21
....\....\........\tt3.bmp,455238,2009-05-21
....\....\........\tt4.bmp,427302,2009-05-21
....\....\........\tt5.bmp,406314,2009-05-21
....\....\........\tt7.bmp,142922,2009-05-21
....\....\........\tt9.bmp,436926,2009-05-21
....\Demo_Dictionary_Training.m,1437,2011-03-07
....\Demo_SR.m,2399,2011-03-07
....\Dictionary
....\..........\D_1024_0.15_5.mat,983828,2011-01-04
....\..........\D_512_0.15_5.mat,492077,2011-01-04
....\extr_lIm_fea.m,433,2011-01-28
....\L1QP_FeatureSign_yang.m,1608,2009-09-30
....\lin_scale.m,128,2011-03-04
....\patch_pruning.m,144,2011-03-07
....\Previous
....\........\ScSR.rar,12388885,2009-05-31
....\........\SR-Results.rar,3172715,2009-04-08
....\README.dat,1483,2011-10-30
....\RegularizedSC
....\.............\construct_reg_mat.m,394,2009-09-25
....\.............\display_network_nonsquare2.m,965,2009-03-05
....\.............\getObjective_RegSc.m,306,2009-09-24
....\.............\L1QP_FeatureSign_Set.m,331,2010-01-30
....\.............\L1QP_FeatureSign_yang.m,1608,2009-09-30
....\.............\l2ls_learn_basis_dual.m,2371,2009-03-05
....\.............\regsc.m,362,2009-09-25
....\.............\reg_sparse_coding.m,3307,2010-12-24

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • dt_cwt-texture
    基于纹理特征的图像检索源码,用双树复小波(DT-CWT)三级分解提取图像的纹理特征(Texture-based image retrieval source code, using dual tree complex wavelet (DT-CWT) to extract texture features three levels of decomposition)
    2013-12-06 15:58:36下载
    积分:1
  • level_set_code_one
    说明:  也是水平集方法的一个matlab源代码 基于边缘信息的(level is a collection of source code based on Matlab Edge Information)
    2006-04-06 09:09:48下载
    积分:1
  • graphcuts
    基于图论法的图像分割,是基于Matlab平台分割(segmentation by graphcut)
    2017-08-22 09:58:24下载
    积分:1
  • liziqun
    粒子群优化算法(的源程序,优化值,对图像分割有很大的帮助。(Particle swarm optimization (PSO) of the source.)
    2010-01-21 18:24:47下载
    积分:1
  • gmm
    高斯混合模型的源代码。从文件中读取数据,用三个高斯混合模型进行处理(Gaussian mixture model of the source code. Read from the file data, using three Gaussian mixture model for processing)
    2013-10-27 19:58:34下载
    积分:1
  • gaijinOPTA
    改进的OPTA,通过设置保留模板,图形细化算法,matlab(Improved OPTA, retained by setting the template graphics thinning algorithm, matlab)
    2012-12-15 15:39:56下载
    积分:1
  • MyBayes
    2.编写两类正态分布模式的贝叶斯分类程序。 设以下模式类别具有正态概率密度函数: ω1:{(0 0)T, (2 0)T, (2 2)T, (0 2)T} ω2:{(4 4)T, (6 4)T, (6 6)T, (4 6)T} (1)设P(ω1)= P(ω2)=1/2,求这两类模式之间的贝叶斯判别界面的方程式。 (2)绘出判别界面。 3.已知服从正态分布的两类训练样本集分别为 :,,,, :,,, ,试问属于哪一类? 4.设有两类一维模式,每一类都是正态分布,两类的均值和均方差分别为,;,。 采用(0-1)损失函数,且。 (1)试绘出两类模式的密度函数曲线,其判别界面位于何处? (2)若已获得样本:-3,-2,1,3,5,试判断它们各属于哪一类。(bayes ,matlab)
    2013-04-12 09:34:26下载
    积分:1
  • MosaicKit
    利用surf算法,来实现图像间的拼接,并可将其推广为多幅图之间的拼接融合。(Realization of two images splicing)
    2018-05-14 19:34:05下载
    积分:1
  • LiaoThreshold
    OTSU图像分割快速算法。原创,附参考文献。(a faster version of Otsu s method)
    2009-03-16 23:18:48下载
    积分:1
  • bbs
    汉字识别,可以识别图片中的汉字,进行图像处理,本科毕业设计的资料(Chinese character recognition)
    2016-12-03 14:04:27下载
    积分:1
  • 696518资源总数
  • 105885会员总数
  • 31今日下载