登录
首页 » matlab » blind-source-separation

blind-source-separation

于 2011-11-17 发布 文件大小:39KB
0 146
下载积分: 1 下载次数: 40

代码说明:

  盲源分离算法,基于最大信噪比实现,包括源程序和算法说明(Blind source separation algorithm, based on the maximum signal to noise ratio to achieve, including source code and algorithm description)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • libsvm-mat-2.82-2
    SVM的matlab接口.为利用SVM进行分类提供了一个matlab的环境(SVM Matlab interface. For the use of SVM classification of a Matlab environment)
    2007-03-18 16:13:42下载
    积分:1
  • exercises
    a good book on numerical pde and its miles !
    2011-09-27 21:32:37下载
    积分:1
  • recognition
    pattern recognition code
    2012-12-04 19:02:20下载
    积分:1
  • sop12
    干涉雷达处理的著名开源包,可以直接使用,建议做雷达干涉的下载(InSAR processing well-known open source packages can be used directly, it is recommended to do radar interferometry Download)
    2009-11-24 06:55:07下载
    积分:1
  • mode-space-smooth-DOA
    均匀圆阵模式空间下用music法和平滑的music估计DOA(Under the Uniform Circular Array with music pattern space law and the smooth music DOA estimation)
    2011-05-10 23:33:50下载
    积分:1
  • Test
    自己写的matlab预测数据程序 希望会有用 谢谢(Forecast data to write the matlab program want to be useful Thank you)
    2011-11-09 13:41:08下载
    积分:1
  • mu_lambda_and_mu_plus_lambda_ES
    一个使用matlab实现进化博弈过程仿真实验的例子(This function uses ES to optimize a function f(x_1,...,x_n). There are a set of 55 test functions to check the effectiveness of the algorithm when optimizing functions. Feel free to leave comments, corrections or suggestions. Read the comments in the code for more information and bibliography used in the development of this code.)
    2015-01-29 17:55:34下载
    积分:1
  • p_classical
    经典的功率谱估计,平均周期图法实现,已经加上了详细的注释(Classical power spectrum estimation, the average periodogram implementation, has added a detailed comment)
    2009-03-19 20:35:52下载
    积分:1
  • contourtracing
    matlab下的轮廓跟踪算法,获得边界数值数组和一些测量位置和边界。(get border as numeric array and a number of measurements of a spot and a border)
    2009-04-26 13:47:47下载
    积分:1
  • gm11
    function exp85 clear all p=[0:0.1:1.1] t=[22.4570 26.6012 12.6416 5.9367 6.9265 28.2432 31.5068 37.0166 7.8947 1.0398 12.7095] net=newff([0 1],[5 1],{ tansig purelin }, traingdx , learngdm ) net.trainParam.epochs=2500 net.trainParam.goal=0.001 net.trainParam.show=50 net=train(net,p,t) r=sim(net,p) plot(p,t,p,r, * ) y=sim(net,[1.2])
    2012-04-26 12:14:11下载
    积分:1
  • 696518资源总数
  • 105717会员总数
  • 10今日下载