-
proj06-02
实验中使用随机反向传播算法对构造的神经网络进行学习,最终得到构造的神经网络的权值矩阵。(Experiment using the random back-propagation algorithm to construct the neural network learning, the final structure of the neural network obtained the weight matrix.)
- 2010-08-28 19:51:08下载
- 积分:1
-
ofdmtransmit
ofdm的仿真,对仿真过程中的各个环节的信号进行频谱分析(ofdm simulation, the simulation of all aspects of the signal spectrum analysis)
- 2009-04-20 20:55:46下载
- 积分:1
-
GUI-example
matlab gui 35个应用实例。压缩包内附有源程序。(matlab gui 35 个 application examples. Archive containing a source.)
- 2010-12-29 16:06:49下载
- 积分:1
-
ISFLA_R
一种改进的蛙跳算法,语言为matlab真实有效(Watti algorithm implemented by modular programming, the language is CPP real and effective)
- 2019-04-29 15:30:31下载
- 积分:1
-
xianxingguihua
matlab 插值处理的程序 大家可以看看(matlab interpolation processing program you can look at)
- 2009-10-12 20:52:18下载
- 积分:1
-
matlabsy
simple function for pictire displaying and saving in matlab + preemphasis of signal(simple function for pictire displaying and saving in matlab+ preemphasis of signal)
- 2009-12-04 16:26:26下载
- 积分:1
-
New-WinRAR-archive
newton raphson load flow code used in matlab
- 2016-02-28 04:00:07下载
- 积分:1
-
eemd
eemd算法原程序及举例,用于信号分解,在emd基础上优化程序(EEMD algorithm original program and examples for signal decomposition, optimization program based on EMD)
- 2019-03-28 14:33:45下载
- 积分:1
-
homework2(YUV)
采用YUV+K-means对路标进行提取,效果十分不错。(YUV+ k-means is adopted to extract road signs, and the effect is very good.)
- 2020-06-20 09:20:01下载
- 积分:1
-
一个双向LSTM程序 BiLSTM
说明: 一个双向LSTM程序
Long Short Term 网络—— 一般就叫做 LSTM ——是一种 RNN 特殊的类型,可以学习长期依赖信息。LSTM 由Hochreiter & Schmidhuber (1997)提出,并在近期被Alex Graves进行了改良和推广。在很多问题,LSTM 都取得相当巨大的成功,并得到了广泛的使用。
LSTM 通过刻意的设计来避免长期依赖问题。记住长期的信息在实践中是 LSTM 的默认行为,而非需要付出很大代价才能获得的能力!
所有 RNN 都具有一种重复神经网络模块的链式的形式。在标准的 RNN 中,这个重复的模块只有一个非常简单的结构,例如一个 tanh 层。(A bidirectional LSTM program
Long short term network, commonly known as LSTM, is a special type of RNN that can learn long-term dependent information. LSTM was proposed by Hochreiter & schmidhuber (1997) and recently improved and promoted by Alex graves. In many problems, LSTM has achieved great success and has been widely used.
LSTM is designed to avoid long-term dependency. Remember that long-term information is the default behavior of LSTM in practice, not the ability to acquire it at a great cost!
All RNNs have a chained form of repetitive neural network modules. In the standard RNN, this repetitive module has only a very simple structure, such as a tanh layer.)
- 2021-04-21 22:08:49下载
- 积分:1