-
jisGWT
这个是利用Google Web Toolkit开发的一个桌面应用程序框架,这是基于这GWT的环境下工作的,功能强大!(This is the use of Google Web Toolkit development of a desktop application framework that is based on the GWT environment, work, and powerful!)
- 2009-09-25 17:27:45下载
- 积分:1
-
Demo
获得用户名,VC++精选编程学习源码,很好的参考资料。(Get the username, VC++ select learning programming source code, a good reference.)
- 2013-11-28 10:55:30下载
- 积分:1
-
knn
说明: 以图像处理和knn算法为基础,利用knn算法,在python开发环境中设计了一个手写数字识别系统,该系统采用28*28的模板对图新分成784块提取手写数字的784个特征,在二值图像数据基础上,通过朴素贝叶斯分类器算法,对0~9这十类手写数字进行学习和分类。(Based on image processing and KNN algorithm, a handwritten digit recognition system is designed in Python development environment by using KNN algorithm. The system uses 28*28 template to divide the graph into 784 blocks to extract 784 features of handwritten digits. On the basis of binary image data, it learns and classifies the ten types of handwritten digits, 0-9, through Naive Bayesian classifier algorithm.)
- 2019-04-29 11:06:29下载
- 积分:1
-
Java_jisuanqi
用Java写的计算器,,,,,,,,,新手可以下来看看(Written in Java Calculator)
- 2014-03-12 16:04:20下载
- 积分:1
-
Exam1_BH
exam 1 for students, who studied ssd4...
- 2010-05-07 16:03:48下载
- 积分:1
-
source2
c#环境下开发的桌面管理系统,.net版本由VB.net,C#,VC++三种语言混合开发而成(c# development environment under desktop management system,. net version of VB.net, C#, VC++ mix was developed in three languages)
- 2013-12-07 18:36:20下载
- 积分:1
-
MD5_Java_Bean_SourceCode
MD5的java bean实现。做这方面工作的人可以综合参考一下。已经有人上传很多这样类似的代码了,可我没搜到我这个的,所以还是传上来了。(MD5 realization of the java bean. Work in this area so people can comprehensive reference. From this has been a lot of similar code, and could I have not found me, so it onto the mass.)
- 2008-01-06 18:38:59下载
- 积分:1
-
network_player_source_coding
支持多种格式的网络流媒体播放器源码,非常好用。(Supports a variety of formats, network streaming media player source code, very easy to use.)
- 2009-12-02 14:23:56下载
- 积分:1
-
6790966
Winamp样式的自动停靠对话框,VC++经典编程源码,很好的参考资料。(Winamp style automatic berth dialog, VC++ classic programming source code, a good reference.)
- 2013-11-15 09:09:59下载
- 积分:1
-
LSSVR回归
说明: 可用于最小二乘支持向量回归相关问题,非线性拟合及预测(It can be used in least squares support vector regression, nonlinear fitting and prediction)
- 2020-12-25 16:46:41下载
- 积分:1